
UML-based Formal Verification

of Embedded Systems

L. Baresi, A. Morzenti, A. Motta, M. Rossi

DEEP-SE Group,

Dipartimento di Elettronica e Informazione

Politecnico di Milano

FMCO2010, Graz - 29/11/2010

2

Approach Overview and Principles

• Keep the UML notation as standard as possible

• Hide the formal details from the user

MADES

Diagrams

(system)

Formal

model

MADES formal

semantics

Formal

Verification

tool

OK

MADES

Diagrams

(properties)

MADES

Diagram

(counter-

example)

customized UMLstandard UML formal methods no user intervention

3

A More Detailed Overview

4

Formal Ingredients: TRIO

• TRIO is a first-order linear temporal logic

• with a metric notion of time

• the time domain can be discrete or dense

• here we focus on a discrete time domain

• The TRIO specification of a system consists of a set of

TRIO formulae

• The formulae state how items are constrained and how they vary

over time

5

TRIO temporal operators

6

Formal Ingredients: Zot

• A bounded satisfiability/model checker that supports

verification of discrete-time TRIO models

• it checks whether stated properties hold for the system being

analyzed

• If a property does not hold, Zot produces a counterexample that

violates it

• Zot is plugin-based

• every plugin defines an encoding of a formal language (e.g.,

TRIO) into the input language of a verification engine

• two kinds of verification engines: SAT solvers (DIMACS input) and

SMT solvers (SMT-LIB input)

7

Example System

The telephone system should provide the following features:

At the startup the system should connect to the remote server and initialize the

graphical user interface (GUI). If the telephone is not correctly connected to the

server the GUI will not be shown. The connection is attempted 3 times with a

timeout of 10 seconds.

When the startup is finished the system is ready to receive incoming calls and

SMSs. Incoming calls may arrive at any instant. Incoming SMS are checked on

the server every 20 seconds by the telephone itself. If no reply is received by the

server within 10 seconds the attempt is not repeated.

If the telephone is idle (e.g. it is not performing any call, or any SMS composition)

and the user presses a number, the number itself is shown on the screen and the

telephone waits for the remaining digits until the green button is pressed. If the

red button is pressed the system aborts the operation.

If the telephone is idle and the user presses the ok button, then a textual

interface is shown to compose the SMS. When the ok button is pressed again

the GUI waits for the telephone number and when the ok button is pressed the

SMS is sent. SMSs are sent with tokens of 160 characters. The transmission

time follows this formula: trTime=length(SMS)/sigStrength*10 sec, where

sigStrength may be {1,2,3,4,5}.

8

Example of Class diagram

Init
-sigStrenght: enum

-<<TI>> g: GUI

-<<TI>> c: ConnectionThread

GUI

-<<TI>> i: Init

- SMSlen: int

-loadGUI()

-displaytime()

-showIncomingNumber()

-showCallNumber()

-showCallDuration()

-getNumber()

-getChar()

ConnectionThread

-conntrial: int

- <<TI>> i: Init

- <<TI>> s: Server

-connect()

-disconnect()

-checkSMS()

-incomingCall()

TransmissionThread

-receiveCallData()

-handleCall()

-getSMS()

-sendSMS()

Server
-c[*]: ConnectionThread

-t[*]: TransmissionThread

-connect()

-disconnect()

-requestCall()

-sendSMS()

-getSMS()

1

11

0…*

10…*

0…*

1

1

1

<<clockType>>

SMSClockType

-period=20

-drift: false

-minValue= 0

-maxValue= *

-increment= 1

9

Example of Object diagram

i:Init
-sigStrenght={1,2,3,4,5}

g:GUI

c: ConnectionThread

t1: TransmissionThread t2: TransmissionThread

t3: TransmissionThread t4: TransmissionThread

t5: TransmissionThread t6: TransmissionThread

s: Server

<<set>> : threadset1

<<set>> : threadset2

<<clock>>

SMSClock: SMSClockType

10

Example of Interaction Overview Diagram

11

Examples of Sequence Diagrams

run

g: GUI

displayTime()

Loop (1)

Ev:incomingCall

Ev:SMSButton

connect

c: ConnectionThread s: Server

connect()

reply()

@t1
Ev:timeout

@timeout-

@t1=10 &&

conntrial<3

connect()

12

Example of State diagram

ConnectionThread

13

A simpler example

14

From syntax to semantics

• To carry out formal verification, the syntax of the MADES

notation is being given a formal semantics

• the semantics is based on the TRIO temporal logic

15

From Temporal Properties to Temporal Logic

CU S

SD2

downloadSMS

@t0

SD1

CU TU

SMS

@t0

16

nextSMSToken

TU S

SD1

@t0

TU S

SD2

Lasts

TP1

TP2

@t0

receiveSMSToken

TU S

TP2

@t1>t0

TU S

TP1

receiveCallData
@t2<t1

17

Counterexample

property

violation

18

Conclusions and Future Works

• This is a first step towards a technique to model and verify

embedded systems using an intuitive UML-based notation

• We have a preliminary formal semantics of part of the

notations

• based on metric temporal logic

• supported by an automated tool, to verify temporal properties of

modeled systems

• The semantics will be completed in the upcoming months

• Information provided by the user through tags in the UML

diagrams will be used to speed up the verification phase

