High blood glutathione levels accompany excellent physical and mental health in women ages 60 to 103 years

CALVIN A. LANG, BETTY JANE MILLS, HELEN L. LANG, MARICA C. LIU, WAYNE M. USUI, JOHN RICHIE JR, WALTER MASTROPAOLO, and STANLEY A. MURRELL

LOUISVILLE, KENTUCKY

Earlier we found a high percentage of subnormal total glutathione (GT) levels in blood from elderly subjects and patients with chronic diseases. These findings suggested a hypothesis that high levels of GT in the blood occur in old persons who are in excellent physical and mental health. To this end, we recruited 87 white women who ranged in age from 60 to 103 years and reported that they felt healthy. Their health was verified with physical examinations, clinical chemistry profiles, psychosocial assessments, and blood GT determinations. This evaluation was performed in three waves over a 5-year period. The values were compared with those from representative individuals in this region and with normal national data. The results verified that these healthy subjects were in top physical and mental health. We also found that subjects of all ages had very high blood GT levels in waves I and II but only normal levels in wave III. These findings confirm that high blood GT concentrations and excellent physical and mental health are characteristics of long-lived women. (J Lab Clin Med 2002;140:413-7)

Abbreviations: GSH = glutathione; GT = total glutathione; HPLC = high-pressure liquid chromatography; SEM = standard error of the mean

For several decades, we have investigated the tissue distribution and function of GSH during the life spans of different organisms, including the mosquito, mouse, rat, and human being.1,6 Of particular interest was the GT profile in blood during aging. In the C57BL/6J mouse, the levels in various organs were constant during maturity but declined markedly during senescence. Moreover, the changes in GSH concentration paralleled those in heart, liver, kidney, lung, brain, and spleen during the adult life span. These findings formed our basis for regarding GT as an accessible index of longevity and also of overall body GSH.

Our current focus has been on GSH and its precursor cysteine in human populations. Initially we sought information on the physical health of elderly people, but we found a paucity of data for individuals more than 65 years old. A notable exception was the New Mexico Aging Process Study,7 which was primarily focused on nutritional biochemical aspects and less on mental health.

Of special interest was our discovery of blood GSH deficiency in more than half of healthy, elderly subjects 60 to 79 years old, compared with normal levels in the 20- to 39-year-olds who made up the reference group.5 The criterion for deficiency was a subnormal concentration of erythrocytic GSH, accounting for 99.5% of that in blood.8 It is therefore a superior index of defi-
Table I. Major characteristics of healthy 60- to 103-year-old women

<table>
<thead>
<tr>
<th>Wave</th>
<th>Body-mass index (kg/m²)</th>
<th>Systolic blood pressure (mm Hg)</th>
<th>Diastolic blood pressure (mm Hg)</th>
<th>Blood glucose (mg/dL serum)</th>
<th>Cholesterol (mg/dL serum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>24.2 ± 0.51 (58)*</td>
<td>145 ± 2.39 (58)</td>
<td>78.8 ± 1.26 (58)</td>
<td>97.9 ± 1.99 (70)</td>
<td>221 ± 3.99 (65)</td>
</tr>
<tr>
<td>II</td>
<td>24.5 ± 0.68 (41)</td>
<td>146 ± 3.13 (41)</td>
<td>76.2 ± 1.44 (41)</td>
<td>92.9 ± 1.21 (42)</td>
<td>224 ± 5.48 (42)</td>
</tr>
<tr>
<td>III</td>
<td>25.1 ± 0.86 (47)</td>
<td>139 ± 2.76 (50)</td>
<td>77.2 ± 1.45 (50)</td>
<td>106 ± 2.70 (57)†</td>
<td>217 ± 4.24 (56)</td>
</tr>
</tbody>
</table>

*Data expressed as mean ± SEM (n).
†Significantly different from wave I (P < .05).

RESULTS

The general physical-health characteristics of the healthy group are presented in Table I. The mean body-mass index in all waves varied from 24 to 25, indicating that the subjects were stable and of normal weight. Their systolic and diastolic blood pressures and average blood glucose values were normal, including the wave III value of 106 mg/dL. The cholesterol levels in all waves were normal at the time of the study but are now considered slightly high. We noted no change between waves I and III. The results of other tests, such as occult blood and pulmonary function, were normal, like those reported for young healthy adults (data not given).

Clinical chemistry and hematology laboratory results are shown in Table II. Profiles were the same for each wave.
wave, demonstrating the reproducibility and constancy of the laboratory values of the subjects during the 5-year span of this study. In addition, the values were within the normal ranges given in the right column of the table.

The psychosocial aspects of income, education level, marital status, and number of rooms per household are listed for each wave in Figure 1. None of these parameters changed during this study.

The health indexes for physical health, life satisfaction, general well-being, and depression in the healthy and representative groups are shown in Figure 2. The scores for percent impairment were scaled in reverse; therefore a high score indicates a high degree of pathology. The healthy group had significantly lower (and better) scores for every index than the representative subjects (P < .001).

Age profiles for these indexes are shown in Figure 3. Again, the healthy women had generally lower scores...
than the women in the representative group. The physical-health and life-satisfaction indexes were near-constant with age. However, two changes were noted in the 95-year group. Wave I values for general well-being and depression were about the same for the healthy and representative groups. These may be areas for further research.

After verifying the excellent physical and mental health of the healthy subjects, we assessed GSH levels (Table III). Mean GSH levels, shown in Table III, were generally high ($P < .05$) compared with the normal range for women reported in an earlier study. Lower levels were found in wave III, in which the values were the same as those in the reference group. The only exception was the 90- to 103-year group, in which GT levels were statistically higher ($P = .0338$) than in the reference group.

DISCUSSION

Our results confirm the hypothesis that high blood GT concentrations occur in physically and mentally healthy elderly women. We found several other interesting results.

The major finding was the blood GT levels of the healthy subjects. They were the highest values we have measured in our experience with several hundred subjects and were in the top portion of the normal range established previously. Furthermore, we found no marked decrease in GSH levels in the 60- to 79-year group, as found earlier. In the previous study, the subjects were assumed to be clinically healthy, but in our experiment, all subjects were rigorously selected and their excellent physical and mental health validated with a battery of tests.

A surprising finding was that the biomedical profiles for the healthy elderly women were the same as those for healthy 20- to 39-year-old adults, the age group used to establish normal adult values in clinical chemistry laboratories. This may be the first time that quantitative objective data have been presented showing that the physical characteristics of healthy women are the same regardless of age.

The evaluation of health status is better determined by physiological than by chronological age. Uniquely, the status of the healthy group was both self-assessed and confirmed with physical examination, laboratory tests, and individual interviews. Other clinical investigations usually assume that the control subjects are in good health, but do not verify this assumption with quantitative tests.

Another unusual aspect of this work was the range of old ages studied: 60 to 103 years. Few clinical studies include subjects beyond 70 to 75 years, yet the current annual increase of life expectancy indicates that information on people of older ages is needed.

This study shows that psychosocial or mental-health status was the same in healthy subjects of different ages and was associated generally with physical health. However, in subjects older than 90 years, some psychosocial aspects, such as general well-being and depression, were subnormal, but physical-health and life-satisfaction indexes remained normal. In this study, there were relatively few persons in the 90-plus-years age group for proper comparison. Do physical and mental health becomes unlinked at very old ages? Does brain function become dissociated from other organ functions during senescence? Further research is needed to answer these questions.

The results of this study are provocative, for these healthy older women were in better condition than the representative subjects, as assessed on the basis of their GT levels. Most important, the elderly were evaluated in excellent health with the use of objective criteria.

Our original goal was to verify that blood GSH was in high concentration in healthy women older than 60 years. We found that the mean levels of GT were higher than those in young adults. Therefore the elderly subjects were still in the mature stage, compared with the marked GSH declines of senescence in aging models such as the yellow-fever mosquito (*Aedes aegypti*), the C57BL/6J mouse, and Sprague-Dawley and Lobund rats.

Finally, this study was focused on GSH levels and health. It is hoped that idiopathic maladies and diseases will no longer be attributed to aging, a vague and usually ill-defined condition. A more likely possibility is that they are a result of a low GSH level.

Life-span studies are now more feasible, for today...
there exist a number of characterized longitudinal investigations of very old people, such as the centenarian and nun studies such as the New England Centenarian Study siblings. Additional research of such subjects in the future should elucidate the relationships among glutathione, health, and longevity.

We are indebted to Paul Schulte for the interviews and to Professors Wayne M. Usui, Fran H. Norris, and Douglas Crews for their valuable contributions to this project.

REFERENCES

Table III. G^T levels in healthy elderly women compared with normal reference group

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Wave I</th>
<th>P value</th>
<th>Wave II</th>
<th>P value</th>
<th>Wave III</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-69</td>
<td>613 ± 22.3 (14)†</td>
<td><.001‡</td>
<td>648 ± 21.4 (12)</td>
<td><.001‡</td>
<td>539 ± 22.4 (12)</td>
<td>.850</td>
</tr>
<tr>
<td>70-79</td>
<td>650 ± 14.5 (13)</td>
<td><.001‡</td>
<td>624 ± 15.7 (16)</td>
<td><.001‡</td>
<td>504 ± 30.3 (14)</td>
<td>.125</td>
</tr>
<tr>
<td>80-89</td>
<td>645 ± 28.9 (11)</td>
<td><.001‡</td>
<td>682 ± 57.6 (8)</td>
<td><.001‡</td>
<td>570 ± 52.8 (9)</td>
<td>.420</td>
</tr>
<tr>
<td>90-103</td>
<td>744 ± 33.7 (6)</td>
<td><.001‡</td>
<td>774 ± 61.6 (6)</td>
<td><.001‡</td>
<td>659 ± 115 (7)</td>
<td>.0338‡</td>
</tr>
</tbody>
</table>

*G^T consists of reduced and oxidized forms.
†Data expressed as mean ± SEM (n).
‡P < .05 vs normal reference value, 543 ± 9.87 (31).