Contents

<table>
<thead>
<tr>
<th>No.s</th>
<th>Items</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radial Bearing & H-Distance by Coordinates</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Radial Coordinates by Bearing Distance</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Point to Point XYZ</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Reference Line</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Chainage Offset</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Intersections by Coordinates</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Intersections by Bearings</td>
<td>8-9</td>
</tr>
<tr>
<td>8</td>
<td>Intersections by Angles</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Cross Point</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Angles Clock wise Anti-Clock wise</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Point to Point Easting Northing</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Point to Point Bearing&Distance</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>2 Point Resection</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>3 Point Resection</td>
<td>16-17</td>
</tr>
<tr>
<td>15</td>
<td>3 Point Centre of Circle Coordinates</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>Simple Horizontal Curve Left & Right</td>
<td>19-20</td>
</tr>
<tr>
<td>17</td>
<td>Level</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>Interpolation</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>Vertical Curve</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>Triangles</td>
<td>24-25</td>
</tr>
<tr>
<td>21</td>
<td>Calculator Information</td>
<td>26</td>
</tr>
</tbody>
</table>

Instruction

Before using the programs make some checks and make sure its working properly.
Radial Bearing & H-Distance by Coordinates

Introduction
Compute the "Bearing&Distance" from any point to other points. This program removes the need to keep re-entering the first set of co-ordinates.

Program
Deg:"STN E"?A:"STN N"?B:"SCALE FACTOR"?Z
Lbl 0:"POINT E"?C:"POINT N"?D
"BEARING=":Arg((B-D)+(A-C)i)+180►DMS
"H-DISTANCE=":Abs ((B-D)+(A-C)i)÷Z
Goto 0

Example with Diagram

Input
"From "co-ordinates: (STN E , STN N)
"To "co-ordinates: (POINT E , POINT N),?
"Depend on area" IF NO SCALE FACTOR THEN =1.00000

Output
Bearing & Distance (STN E , STN N) to (POINT E , POINT N)
(STN E , STN N) to ?
Radial Coordinates by Bearing Distance

Introduction
Compute the "Coordinates" from any point to other points. This program removes the need to keep re-entering the first set of co-ordinates.

Program
Deg:"STN E"?A:"STN N"?B:"SCALE FACTOR"?Z Lbl 0:"BEARING"?C:"H-DISTANCE"?D "EASTING=":(sin(C)×(D×Z))+A Goto 0 "NORTHING=":(cos(C)×(D×Z))+B

Example with Diagram

Input
"From "co-ordinates: (STN E , STN N)
"To "bearing distance: (BEARING , H-DISTANCE),?
"Curvature correction" IF NO SCALE FACTOR THEN =1.00000

Output
Easting & Northing (STN E , STN N) to (POINT E , POINT N)
(STN E , STN N) to ?
Introduction

Compute the "Easting Northing Elevation" a point to next point

Program

Deg: Lbl 0

"STN E"?A:"STN N"?B:"STN ELEV"?C:"AZIMUTH"?D:"ZENITH ANGLE"?E:"H-DISTANCE"?F:
"H.I"?G:"T.H"?H:"SCALE FACTOR"?Z

"OBS EAST":=A+(sin(D)×(F×Z))
"OBS NORTH":=B+(cos(D)×(F×Z))
"OBS ELEV":=C+G+(sin(90-E)×F)-H

Goto 0

Example with Diagram

Input

"At Station" (STN E, STN N, STN ELEV, I.H)
"To Station" (AZIMUTH, ZENITH ANGLE, H-DISTANCE, T.H)
"Curvature correction" IF NO SCALE FACTOR THEN = 1.00000

Output

"To Station"

OBS EAST
OBS NORTH
OBS ELEV
Reference Line

Introduction
Compute the "Easting&Northing" from base line to any other point with reference of distances.

Program
Deg: "POINT-1E"?A:"POINT-1N"?B:"POINT-2E"?C:"POINT-2N"?D
Lbl 0: "DISTANCE"?E:"OFFSET+/-"?F
"REQ -E": A + (sin(Arg((B-D)+(A-C)i)+180)x E) + (sin(Arg((B-D)+(A-C)i)+180+90)x F)
"REQ -N": B + (cos(Arg((B-D)+(A-C)i)+180)x E) + (cos(Arg((B-D)+(A-C)i)+180+90)x F)
Goto 0

Example with Diagram

<table>
<thead>
<tr>
<th>POINT-1E</th>
<th>POINT-2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POINT-1N</th>
<th>POINT-2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>100</td>
</tr>
</tbody>
</table>

OFFSET +/-
DISTANCE 10.000

Input
"From "co-ordinates: (POINT-1E, POINT-1N)
"To "co-ordinates: (POINT-2E, POINT-2N)
"From base point" DISTANCE
"From base line" OFFSET +/-

Output
Easting&Northing
REQ-E
REQ-N
Introduction
Compute the "Distance&Offset" from base line to any other point with reference of co-ordinates.

Program
Deg:"STN E"?A:"STN N"?B:"POINT E"?C:"POINT N"?D
Lbl 0:"OBS-E"?E:"OBS-N"?F
"DISTANCE":(cos(Arg((B-F)+(A-E)+180-Arg((B-D)+(A-C)+180)+Abs ((B-F)+(A-E)+180)))
"OFFSET":(sin(Arg((B-F)+(A-E)+180-Arg((B-D)+(A-C)+180)+Abs ((B-F)+(A-E)+180)))
Goto 0

Example with Diagram

Input
"From "co-ordinates: (POINT-1E, POINT-1N)
"To "co-ordinates: (POINT-2E, POINT-2N)
"At Station" OBS-E
"At Station" OBS-N

Output
From base point DISTANCE
From base line OFFSET +/-
Introduction

Compute the "Easting&Northing" of two line intersection follow diagram sequence

Program

Lbl 0
Deg:"EAST 1"?B:"NORTH 1"?A:"EAST 2"?D:"NORTH 2"?C:"EAST 3"?F:"NORTH 3"?E:"EAST 4"?H:"NORTH 4"?G→
(A-C)÷(B-D)→I:(E-G)÷(F-H)→J
"PI EAST=":(E-A-(J×F)+(I×B))÷(I-J)→K
"PI NORTH=":A-(I×(B-K))
Goto 0

Example with Diagram

Input
"Easting & Northing "

Output
Intersection Point

INT EAST
INT NORTH
Program
Lbl 0
If E=0:Then 0.0000001→E:If End
If F=0:Then 0.0000001→F:If End
If E=90:Then 90.0000001→E:If End
If F=90:Then 90.0000001→F:If End
If E=180:Then 180.0000001→E:If End
If F=180:Then 180.0000001→F:If End
If E=270:Then 270.0000001→E:If End
If E=270:Then 270.0000001→E:If End
1÷(tan(E))→P
1÷(tan(F))→Q
tan(E)→R
tan(F)→S
((C×Q)-(A×P)+B-D)÷(Q-P)→X
((D×S)-(B×R)+A-C)÷(S-R)→Y
Fix 3
"EASTING=:"X
"NORTHING=:"Y
Lbl 3
Deg:"MENU"
"[1] NEW STANS";"[2] CONTINUE"?M
If M=1:Then Goto 1:If End
If M=2:Then Goto 2:If End
Goto 3
Example with Diagram

![Diagram of Intersections by Bearings]

Input
"Easting & Northing "
EAST 1, NORTH 1
EAST 2, NORTH 2
Bearings
AZIMUTH 1
AZIMUTH 2

Output
Intersection Point
EASTING
NORTHING
Intersections by Angles

Introduction

Compute the "Easting&Northing" of two line intersection follow diagram sequence

Program

Lbl 0
Deg:"STN-1E"?A:"STN-1N"?B:"STN-2E"?C:"STN-2N"?D:"ANGLE 1"?E:"ANGLE 2"?

180-(E+F)→G:Arg((B-D)+(A-C)i)+180→H:Abs((B-D)+(A-C)i)+I:(I×sin(F))÷(sin(G))→J

"PI EAST=":A+(sin(H-E)×J)
"PI NORTH=":B+(cos(H-E)×J)
Goto 0

Example with Diagram

Input

"Easting & Northing "

Bearings

Output

Intersection Point

STN E1=17.153
STN N1=15.870

STN E2=40.205
STN N2=9.809

PI EAST =31.712
PI NNORTH=22.991

ANGLE-1 40 47'42"

ANGLE-2 28'32"

EAST 1, NORTH 1
EAST 2, NORTH 2

ANGLE 1
ANGLE 2

INT EAST
INT NORTH
Introduction
Compute the "Cross" co-ordinates or change elevation follow the sequence which is in diagram.

Program
Lbl 0
Deg: "EAST 1"?A: "NORTH 1"?B: "EAST 2"?C: "NORTH 2"?D: "EAST 3"?E: "NORTH 3"?F: "EAST 4"?X: "NORTH 4"?Y
(D-B)+(C-A)→H: (E-X)+(F-Y)→G
"CROSS POINT EAST": (F-1÷G×E-B+H×A)÷(H-1÷G)→I
"CROSS POINT NORTH": B+H×(I-A)
Goto 0

Example with Diagram

Input
"Easting & Northing / Chainage & Elevation
EAST 1, NORTH 1
EAST 2, NORTH 2
EAST 3, NORTH 3
EAST 4, NORTH 4

Output
Cross Point
CROSS POINT EAST
CROSS POINT NORTH
Introduction

Compute the "Angle" between two line from a point.

Program

Lbl 0
Deg: "BACKSIGHT"?A:"FORSIGHT"?B
If (B-A)<0:Then 360+(B-A)→C:Else (B-A)→C
"CLOCKWISE=":C►DMS
"ANTI-CLOCKWISE=":360-C►DMS
Goto 0

Example with Diagram

Input
"Observe Station" Horizontal Angle : BACKSIGHT FORSIGHT

Output
Angles
CLOCK WISE
ANTI-CLOCK WISE
Introduction
Compute the “Easting&Northing” with the use of “Azimuth & Distance” no need to re-enter the next station co-ordinates just give the next azimuth and distance it automatically calculate the next point “Easting Northing”.

Program
Deg:”STN E”?A:”STN N”?B:”SCALE FACTOR”?Z→Z
Lbl 0:”POINT AZMUT”?C:”POINT DISTANCE”?D→D
"NEXT EASTING=":(sin(C)×(D×Z))+A→A
"NEXT NORTHING=":(cos(C)×(D×Z))+B→B
Goto 0

Example with Diagram

```
STN E=100.000
STN N=100.000

Input
"From "co-ordinates: (STN E , STN N)
"To "co-ordinates: (AZIMUTH,DISTANCE)
"Curvature correction" IF NO SCALE FACTOR THEN = 1.00000

Output
Bearing & Distance NEXT-EAST
NEXT NORTH

SCALE FACTOR=0.999621
```

Program
Point to Point Easting Northing
Compute the “Easting&Northing” with the use of “Azimuth & Distance” no need to re-enter the next station co-ordinates just give the next azimuth and distance it automatically calculate the next point “Easting Northing”.

```
Deg:”STN E”?A:”STN N”?B:”SCALE FACTOR”?Z→Z
Lbl 0:”POINT AZMUT”?C:”POINT DISTANCE”?D→D
"NEXT EASTING=":(sin(C)×(D×Z))+A→A
"NEXT NORTHING=":(cos(C)×(D×Z))+B→B
Goto 0
```

Example with Diagram

```
STN E=100.000
STN N=100.000

Input
"From "co-ordinates: (STN E , STN N)
"To "co-ordinates: (AZIMUTH,DISTANCE)
"Curvature correction" IF NO SCALE FACTOR THEN = 1.00000

Output
Bearing & Distance NEXT-EAST
NEXT NORTH

SCALE FACTOR=0.999621
```
Introduction

Compute the "Bearing&Distance" with the use of "Easting & Northing" no need to re-enter the station co-ordinates again just give the next Easting and Northing its automatically calculate the next point "Bearing Distance".

Program

Deg:"STN E"?A:"STN N"?B:"SCALE FACTOR"?Z
Lbl 0:"POINT E"?C:"POINT N"?D
"BEARING=:Arg((B-D)+(A-C)i)+180►DMS
"H-DISTANCE=:Abs ((B-D)+(A-C)i)/Z
C→A:D→B ▶Goto 0

Example with Diagram

![Diagram of Point to Point Bearing Distance](image)

Input

"From "co-ordinates: (STN E , STN N)
"To "co-ordinates: (AZIMUTH, DISTANCE)
"Curvature correction" IF NO SCALE FACTOR THEN = 1.00000

Output

Bearing & Distance

NEXT-EAST

NEXT NORTH
Introduction

Compute the "Co-ordinate" of free Station from two point resection

Program

```
Lbl 0
Deg:"1ST POINT E"?B:"1ST POINT N"?A:"2ND POINT E"?D:"2ND POINT N"?C:
"1ST POINT DIST"?E:"2ND POINT DIST"?F
A-C→X:B-D→Y:Arg (X+Yi)+180→J:Abs (X+Yi)→I:(J+cos⁻¹((I²+E²-F²)/(2×I×E))→T:E*Z→T
"STN E=":B+sin(T)×E→N
"STN N=":A+cos(T)×E→M
"OBS ANGLE=":cos⁻¹((E²+F²-I²)/(2×E×F))→DMS
N-C→X:M-D→Y:"BRG POINT=":Arg (X+Yi)+180→DMS
"Distance=":Abs (X+Yi)
Goto 0
```

Example with Diagram

![Diagram showing 2 Point Resection](image)

Input

- "co-ordinates" 1ST POINT E, 1ST POINT N
- "Distance" 1ST POINT DIST

Output

- "Free Station co-ordinates" STN E
- STN N
Introduction

Compute the "Co-ordinate" of free Station from three point angular resection

Program

Lbl 1
Deg:"1ST POINT E"?A:"1ST POINT N"?B:"2ND POINT E"?C:"2ND POINT N"?D:"3RD POINT E"?E:"3RD POINT N"?F

Lbl 2
"AZIMUTH 1"?G:"AZIMUTH 2"?H:"AZIMUTH 3"?I

(A-C)→J:(B-D)→K:(A-E)→L:(B-F)→M
Arg(K+Ji)+180→N:Arg(M+Li)+180→O
If O-N<0:Then O-N+360→P:Else O-N→P
(C-A)→J:(D-B)→K:(C-E)→L:(D-F)→M
Arg(K+Ji)+180→N:Arg(M+Li)+180→O
If N-O<0:Then N-O+360→Q:Else N-O→Q
(E-A)→J:(F-B)→K:(E-C)→L:(F-D)→M
Arg(K+Ji)+180→N:Arg(M+Li)+180→O
If O-N<0:Then O-N+360→R:Else O-N→R
If I-H<0:Then I-H+360→S:Else I-H→S
If G-I<0:Then G-I+360→T:Else G-I→T
If H-G<0:Then H-G+360→U:Else H-G→U
1÷((1÷Tan(P))-(1÷Tan(S)))→V
1÷((1÷Tan(Q))-(1÷Tan(T)))→W
1÷((1÷Tan(R))-(1÷Tan(U)))→X
((V×A)+(W×C)+(X×E))+((V×E)+(W×D)+(X×F))→M
Fix 4
"EASTING=":M
"NORTHING=":N

Lbl 3
"MENU":[1] NEW STNS:,[2] NEW BRGS"?Z
If Z=1:Then Goto 1:If End
If Z=2:Then Goto 2:If End
Goto 3
Example with Diagram

Input
"Obs Station "co-ordinates:
(1ST POINT E,1ST POINT N)
(2ND POINT E,2ND POINT N)
(3RD POINT E,3RD POINT N)

Output
Free Station Co-ordinates: EASTING,NORTHING
Introduction
Compute the "Northing Easting" of Circle from three co-ordinates always input co-ordinates in clock wise direction.

Program
Lbl 1 →
Deg:"EAST 1"?A:"NORTH 1"?B:"EAST 2"?C:"NORTH 2"?D:"EAST 3"?E:"NORTH 3" →
(A+C)÷2→G:(B+D)÷2→H:(C+E)÷2→I:(D+F)÷2→J →
If(B-D)=0:Then D+.00001→D:If End →
If(D-F)=0:Then D+.00001→D:If End →
If(C-A)=0:Then C+.00001→C:If End →
If(C-E)=0:Then C+.00001→C:If End →
\[\tan^{-1}\left(\frac{(C-A)}{(D-B)}\right)+90\] →K →
\[\tan^{-1}\left(\frac{(C-E)}{(D-F)}\right)+90\] →L →
1÷(tan(K))→P:1÷(tan(L))→Q →
(tan(K))→R:(tan(L))→S →
((I×Q)-(G×P)+H-J)-(Q-P)→X →
((J×S)-(H×R)+G-I)-(S-R)→Y →
Fix 3 →
"C.P EAST=":X →
"C.P NORTH=":Y →
"RADIUS=":\sqrt{(A-X)^2+(B-Y)^2} →
Goto 1 →

Input
"At "co-ordinates:
1st E=23.7368 N=19.0763
2nd E=27.5617 N=18.7473
3rd E=30.0259 N=15.8035

Output
"Centre" Point Co-ordinates: C.P EAST, C.P NORTH
RADIUS：5.000
Introduction

Compute the "Northing & Easting" of Horizontal Curve at any given Chainage and Offset Program

"BC CHAINAGE"?A:"BC EASTING"?B:"BC NORTHING"?C:
"EC EASTING"?D:"EC NORTHING"?E:"RADIUS"?F
"LONG CORD= Abs((B-D)+(C-E)i)→G
 (sin^-1((G÷2)÷F)×2)→H
"DEFLECTION ANGLE=":H▷DMS
"TANGENT LENGTH=":((G÷2)÷cos(H÷2))
"CURVE LENGTH=":(((F×2)×π)÷360)×H→L
"MID ORDINATE=":((G÷2)×tan(H=4))→I
"APEX=":((G÷2)×tan(H÷2))→J
"RISE=":F-II
"[DIRECTION]=":[1]RIGHT":[2]LEFT"?Z
If Z=1:Then 1→Z:If End
If Z=2:Then -1→Z:If End
Arg((C-E)+(B-D)i)+180→J:J+(90-(H÷2))×Z→J
B+sin(J)×F→X:C+cos(J)×F→Y
Arg((Y-C)+(X-B)i)+180→K
Lbl 0
"OFFSET"?N
If N=0:Then 1→W:If End
If N=0:Then Goto 2:Else Goto 5
Lbl 5
If W=1:Then -1→W:If End
If W=2:Then 1→W:If End
Lbl 2
"[1] EAST NORTH":[2]CHAIN OFFSET"?M
If V=1:Then Goto 3:If End
If V=2:Then Goto 4:If End
Lbl 3
"REQ CHAINAGE"?A
"REQ EASTING=":X+(sin(K+(((H+L)×(M-A))×Z))×(F-(N×Z×W)))
"REQ NORTHING=":Y+(cos(K+(((H+L)×(M-A))×Z))×(F-(N×Z×W)))
Goto 3
Lbl 6
Lbl 4
"OBS EASTING"?T
"OBS NORTHING"?O
Abs((Y-O)+(X-T)i)→P:((F-(N×Z×W)))→S:Arg((Y-O)+(X-T)i)+180→Q
If Z=1:Then Q→K:If End
If Z<0:Then K→Q:If End
If R<0:Then S+360→R:If End
If R<0:Then R:If End
If R>H:Then Goto 7:If End
"CHAINAGE=":(((((F×2)×π)÷360)×R))
"OFFSET=":(((F-(N×Z×W))-P)×Z)
Goto 6
Lbl 7
"PNT NOT IN CURVE"?R
Goto 6
____ __
Simple Horizontal Curve Left & Right E,N&Chain,Off

Example with Diagram

[1] EAST NORTH
CHAINAGE
L-OFFSET
FOR LEFT CURVE OFFSET
WILL BE OPPOSIT
B.C
R-OFFSET
[1] EAST NORTH
THIS OPTION WILL CALCULATE
(EASTING&NORTHING) AT REQUIRED
CHAINAGE AND OFFSET

[2] CHAIN OFFSET
CHAINAGE
L-OFFSET (-ANS)
FOR LEFT CURVE OFFSET
WILL BE OPPOSIT
B.C
R-OFFSET (ANS)
[2] CHAIN OFFSET
THIS OPTION WILL CALCULATE
(CHAINAGE&OFFSET) WITH OBSERVED
EASTING&NORTHING
Introduction
Compute the "Level or Staff reading" for level calculation or Level marking from Bench Mark.

Program
Deg:"BM"?A:"BACK SIGHT"?B
Lbl 0:"F.S-I.S-REQ-LEVEL"?C
"LEVEL/I.S=:/(A+B)-C"
Goto 0

Example with Diagram

Input
"REFERENCE POINT: B.M"
"OBS READING: BACK SIGHT"
"REQUIRED: REQ LEVEL/I.S/F.S"

Output
CALCULATED LEVEL/READING REQ LEVEL/I.S/F.S
Interpolation

Compute the "Level in Slopes" at required chainage.

Program

```
Deg:"STRAT ELEV”?A:"START CH”?B:"END ELEV”?C:"END CH”?D ↓
Lbl 0: "REQ CH”?E ↓
"REQ ELEV=":((C-A)÷(D-B)×(E×B))+A ↓
Goto 0 ↓
```

Example with Diagram

![Diagram showing chainage and elevation values](image)

Input

- "Start" Chainage: START CH
- "Start" Level: START ELEV
- "End" Chainage: END CH
- "End" Level: END ELEV
- "Required" Chainage: REQ CH

Output

- Required Elevation: REQ ELEV
Introduction

Compute the "Elevation" on Vertical Curve. This program calculates the elements of curve also.

Program

Deg:"PVI CH"?A:"PVI ELEV"?B:"CURVE LENGTH"?C:"GRAD-1%"?D:"GRAD-2%"?E

"PVC CH"=":A-(C÷2)→F ▽
"PVC ELEV"=":B-(D÷100)×(C÷2)→G ▽
"PVT CH"=":F+C→H ▽
"PVT ELEV"=":B+((E÷100)×(C÷2))→I ▽
Lbl 0:"REQ CH"?J ▽
"REQ ELEV"=":G+((D÷100)×(J-F))+(((E-D)÷(200×C))×(J-F)^2) ▽
Goto 0

Example with Diagram

![Diagram of Vertical Curve]

Input

"At"Chainage: PVI CH
"At"Elevation: PVI ELEV
"Curvature" CURVE LENGTH
"PVC to PVI "Slope percentage: GRAD-1%
"PVI to PVT" Slope percentage: GRAD-2%
Required Chainage between Start to End REQ CH

Output

Curve Start Chainage PVC CH
Curve Start Elevation PVC ELEV
Curve End Chainage PVT CH
Curve End Elevation PVT ELEV
Elevation on Required Chainage REQ ELEV
Introduction

Compute the "Sides & Angles & Area" of triangle

Program

LbI 3
If Z=1:Then Goto 0:If End
If Z=2:Then Goto 1:If End
If Z=3:Then Goto 2:If End
LbI 0

Deg:"SIDE A"?A:"SIDE B"?B:"SIDE C"?C
"ANGLE A":\(\cos^{-1} \left(\frac{(B)^2+(C)^2-(A)^2}{2\times B\times C} \right) \)→F►DMS
"ANGLE B":\(\cos^{-1} \left(\frac{(A)^2+(C)^2-(B)^2}{2\times A\times C} \right) \)►DMS
"ANGLE C":\(\cos^{-1} \left(\frac{(A)^2+(B)^2-(C)^2}{2\times A\times B} \right) \)►DMS
G"AREA"=(C×B×sin(F))÷2
Goto 3

LbI 1

Deg:"ANGLE A"?A:"SIDE B"?B:"SIDE C"?C
"SIDE A"= \(\sqrt{(B^2+C^2)-(2\times B\times C\times \cos(A))} \)→D
"ANGLE B":\(\cos^{-1} \left(\frac{(D)^2+(C)^2-(B)^2}{2\times D\times C} \right) \)→E:E►DMS
"ANGLE C"=180-(A+E)►DMS
"AREA"=(B×C×sin (A))÷2
Goto 3

LbI 2

Deg:"SIDE A"?A:"ANGLE B"?B:"ANGLE C"?C
"ANGLE A"=180-(B+C)→D►DMS
"SIDE B":(A×sin(B))÷sin(D)→E:E
"SIDE C":(E×sin(C))÷sin(B)→F:F
"AREA"=(F×E×sin(D))÷2
Goto 3
Example with Diagram

Input
"Sides or Angle" Select Option 1 or 2 or 3
[1] Side A, Side B, Side C
[2] "or" Angle A, Side B, Side C

Output
"Sides or Angle" (Angle A, Angle B, Angle C), Area
"or" (Side A, Angle B, Angle C), Area
"or" (Angle A, Side B, Side C), Area

Triangles

Side b=25.000
Side a=22.000
Side c=20
Area =210.256 sqm
New Program:
Press MODE
5:PROG Press 5
1:NEW Press 1
File Name?
[TEST] Press 1
File Mode
1:COMP
3:Formula 2:BASE-N
Press 1
Start Prog installation