
D4.4 Model Transformation Tools- Final Version 2/29/2012

The research leading to these results has received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant agreement n° 248864.

MADES

Model-based methods and tools for Avionics and surveillance embeddeD SystEmS

FP7-ICT-2007 248864

D4.4 MADES Model Transformation and Code

Generation Tools – Final Version

Work package: WP4

Lead participant: University of York

Editor: Nicholas Matragkas

Authors: Ian Gray, Nicholas Matragkas, Alek

Radjenovic

Reviewers: Alessandra Bagnato, Gundula Blohm

Date: 29/02/2012

Version: 1.0

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted by a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

D4.4 Model Transformation Tools- Final Version 2/29/2012

3(32)

The MADES Consortium

TXT e-solutions

Via Frigia 27

20126 Milano

Italy

Contact: Ms. Alessandra Bagnato

E-mail: alessandra.bagnato@txt.it

Phone: +39 2 25771.725

Address: Via al Ponte Reale 5

16124 Genova, Italy

SOFTEAM

21 avenue Victor Hugo

75016 Paris

France

Contact: Dr. Andrey Sadovykh

E-mail: andrey.sadovykh@softeam.fr

Phone: +33.1.30.12.18.57

University of York
Heslington

York YO10 5DD

United Kingdom

Contact:Prof. Richard Paige

E-mail: paige@cs.york.ac.uk

Phone: +44 1904437222

Politecnico di Milano
via Golgi, 42

20133 Milano

Italy

Contact: Prof. Luciano Baresi

E-mail: baresi@elet.polimi.it

Phone: +39 02 2399 3638

The Open Group
Avenue du Parc de Woluwe 56

B-1160 Brussels

Belgium

Contact: Scott Hansen

E-mail: s.hansen@opengroup.org

Phone: +32 2 6751136

Cassidian Electronics
Woerthstrasse 85

89077 Ulm

Germany

Contact: Ms. Gundula Blohm

E-mail: Guula.O.Blohm@cassidian.com

Phone: +49 731 392 3757

mailto:paige@cs.york.ac.uk
mailto:baresi@elet.polimi.it

D4.4 Model Transformation Tools- Final Version 2/29/2012

5(32)
Copyright © MADES Consortium

Executive Summary

This document constitutes the MADES project deliverable D4.4 “Model

Transformation and Code Generation Tools – Final Version”. This deliverable

constitutes an updated version of deliverable D4.3 “Model Transformation and Code

Generation Tools – Intermediate Version”. The goal of this document is to provide a

“getting started” guide of the code generation and model transformation tools

developed within workpage 4.

One of the main characteristics of the MADES approach to software development for

embedded systems is that it is model-driven and transformation-based. Model

transformations are used as part of the approach to achieve tool interoperability and

code generation. The first section of this deliverable describes briefly the various

components of the MADES model transformation and code generation tools. A

detailed discussion of those tools is out of the scope of this deliverable. Such a

discussion is presented in deliverable D1.5 “MADES Intermediate Approach Guide”.

In section 2 of this deliverable, an installation guide is provided. This guide covers the

steps required before installing the tools developed within WP4, as well as the

installation of the tools. Finally, in section 3 an example of how to use different

aspects of the tool is provided, while section 4 guides the users how to report bugs for

the tools presented in this document.

D4.4 Model Transformation Tools- Final Version 2/29/2012

6(32)
Copyright © MADES Consortium

Table of contents

1 Introduction .. 7

1.1 Purpose of this deliverable .. 7
1.2 Structure of this document .. 7
1.3 Relationship to other MADES deliverables .. 7
1.4 Contributors .. 8
1.5 Final version of code generation tools .. 8
1.6 Generation of HTML for Documentation ... 9
1.7 Generation of VHDL .. 10
1.8 Code Generation for Verification & Simulation ... 12
1.9 Code Generation with Compile Time Virtualisation 13

1.9.1 AnvilJ System model ... 14
1.9.2 Using AnvilJ .. 15
1.9.3 Restrictions on input code .. 19

1.10 Code Generation and Traceability ... 21
2 MADES Model Transformation and Code Generation Tools 23

2.1 Prerequisites .. 23
2.2 Eclipse Plug-ins .. 23
2.3 Installation instructions ... 23

2.3.1 Install JVM .. 23
2.3.2 Install the MADES Eclipse Bundle ... 24
2.3.3 Download and Install Xilinx Embedded Development Tools 24
2.3.4 Install WP4 Plug-ins .. 24

3 Getting Started ... 25
3.1 Creating a MARTE Hardware Model ... 25

3.1.1 Modelio .. 25
3.1.2 OSM ... 25

3.2 Transform the MARTE Hardware model to an MHS Specification 26
3.3 Generate Hardware Description from an MHS Specification 27
3.4 Generate HTML documentation ... 27

4 Requirements Coverage ... 28
5 Bug Reports ... 29
6 Conclusion ... 30
7 References .. 31

7.1 Acronyms .. Error! Bookmark not defined.

D4.4 Model Transformation Tools- Final Version 2/29/2012

7(32)
Copyright © MADES Consortium

1 Introduction

1.1 Purpose of this deliverable

The role of this document is to accompany the MADES tools for code generation and

model transformation developed within workpackage 4. The focus of this document is

on a "getting started" guide covering the installation of the tool as well as the

deployment of an example.

1.2 Structure of this document

This deliverable is structured in the following way:

 Chapter 1 provides an introduction;

 Chapter 2 describes the prerequisites and the installation guide of the tool and

its prerequisites.

 Chapter 3 provides a usage scenario of the tool

 Chapter 4 provides the requirements coverage for the tools presented in this

document.

 Chapter 5 provides troubleshooting instructions

 Chapter 6 concludes this deliverable

1.3 Relationship to other MADES deliverables

This document presents the MADES code generation and model transformation tools

developed within workpackage 4. The requirements and functionalities of these tools

are derived from D1.1 “Requirement Specification” as well as from D4.1 “Model

Transformation and Code Generation Tools Specification”.

The MADES model transformation and code generation tools are designed to

generate either code or models from diagrams expressed in the MADES notation,

which is a subset of the MARTE and SysML languages as defined in Deliverable

D2.1 “MADES Specification Language”. The purpose of these transformations is to

enable interoperability between the various MADES tools as well as to increase

developers’ productivity by enabling the design of a system at a high level of

abstraction. Moreover, the transformation tools are accompanied by traceability tools,

which capture traceability information between the source and target artefacts

involved in transformations, as well as by editors in which the captured traceability

information can be visualised.

The tools developed within workpackage 4 are part of the complete MADES tool

chain, which is described in D2.2 “MADES Modelling Tools” and in D1.5 “MADES

Approach Guide”.

D4.4 Model Transformation Tools- Final Version 2/29/2012

8(32)
Copyright © MADES Consortium

1.4 Contributors

The main contributor of this deliverable is University of York. Alessandra Bangato

and Gundula Blohm have reviewed this document and have provided valuable feed-

back.

1.5 Final version of code generation tools

The overall objective of workpackage 4 is to enable model-driven design for embed-

ded platforms. This is achieved by supporting the specification of the system using a

dedicated modeling language (MADES) and the automatic derivation of specifica-

tions from the various analysis and design models. These specifications can be used in

diverse development activities such as the generation of platform specific embedded

software from architecturally neutral software specifications, the generation of hard-

ware descriptions of the modeled target architecture as well as the formal verification

of system properties.

In deliverable D4.1 “Model Transformation and Code Generation Tools Specifica-

tion”, a conceptual model of the different interrelationships between the various arte-

facts of the MADES approach was presented. In Figure 1, the different mappings (i.e.

transformations) used in the MADES approach are summarised. Since the MADES

approach is model-driven, the development effort starts by building the relevant de-

sign and analysis models. These models are expressed in the MADES modelling lan-

guage and they are used to guide the rest of the development process.

Figure 1 MADES Mapping Scheme

To support code generation in the context of the MADES project, a set of tools is built

atop the Eclipse platform. These tools are deployed as a set of plugins, which are

D4.4 Model Transformation Tools- Final Version 2/29/2012

9(32)
Copyright © MADES Consortium

combined into Eclipse features according to their functionality. These features are di-

vided into two main categories. The first one is called “MadesCodeGen” and contains

features, which are directly related to code generation or model transformation. The

second category is called “MadesModelling” and it contains features related to model-

ling aspects of the MADES approach.

The features implemented within workpackage 4 are the following:

1. eu.mades.xmi2Html.feature: This feature contains the plugins, which im-

plement the transformation for the generation of HTML code from UML

models for documentation purposes.

2. eu.mades.marteHardware2MHS.feature: This feature contains the

plugins, which implement the generation of MHS specifications from

MARTE Hardware Diagrams. In the context of MADES, these specifica-

tions can be used in conjunction with the Xilinx Platgen
1
 to generate a set of

synthesisable VHDL files for implementation on FPGAs.

3. eu.mades.verification.feature: This feature contains the plugins with the

implementation of the transformation, which takes as input models ex-

pressed in the MADES notation and generates verification scripts for Zot.

4. eu.mades.simulation.feature: This feature contains the plugins with the

implementation of the transformation, which takes as input models ex-

pressed in the MADES notation and generates simulation scripts for Zot.

5. eu.mades.anvilJ: This feature contains the plugins with the implementation

of the AnvilJ tool. AnvilJ is an implementation of Compile-Time Virtualisa-

tion
2
.

6. eu.mades.mhs.feature: This feature consists of the plugins, which contain

the implementation of an Eclipse editor for the MHS notation.

7. eu.mades.papyrus.mades.feature: This feature contains an implementation

of the MADES profile for the Papyrus Modeller. A detailed description of

this feature can be found in deliverable D2.5 “MADES Modelling Tools Fi-

nal Version”.

8. eu.mades.traceability.feature: This feature consists of the plugins, which

implement the traceability editors used in the MADES project.

In the following sections, the above features will be presented briefly. Moreover, the

limitations of the current implementation will be identified.

1.6 Generation of HTML for Documentation

Related Features:

 eu.mades.xmi2Html.feature

1
 Xilinx Corporation. Embedded system tools reference guide EDK 11.3.1. Xilinx Application Notes,

UG111, 2009.
2
 Gray, I. & Audsley, N. Exposing Non-Standard Architectures to Embedded Software Using Compile-

Time Virtualisation International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES '09), 2009

D4.4 Model Transformation Tools- Final Version 2/29/2012

10(32)
Copyright © MADES Consortium

One of the main modules of the MADES tool chain is the Component Repository,

which is presented in deliverable D2.2 “MADES Modelling Tools Final Version”.

The main functionality of the Component Repository is to store, search and download

MADES components. Each component in the repository should be accompanied by

an HTML file, which documents the component. This HTML file should be generated

from its corresponding component (model) by the modelling tool. The

eu.mades.xmi2Html.feature implements this functionality for the Open Source Model-

ler of MADES.

The transformation takes as input a model expressed in the MADES notation and

generates an HTML file together with its accompanying libraries. These libraries

consist of CSS and JavaScript files, which are referenced from the generated

webpage.

As it is illustrated in Figure 2, the webpage consists of two panes. In the left pane, the

MADES model is shown in a tree form. This tree lists all the elements of the MADES

model, as well as any containment relationships. On the other hand, the right pane

contains a properties table of a selected model element. For example, if the user is in-

terested in the properties of the CCAS class, she can click on it in the left pane, and its

properties will be shown on the right one. For usability purposes, the two panes are

resizable and there is the option to collapse or expand the entire tree by clicking the

links provided at the top of the left pane (Collapse All, Expand All). The generated

HTML code along with its accompanying libraries can be archived in a zip file, which

can be stored together with the model it documents in the components repository.

Figure 2 - Exemplar generated webpage

1.7 Generation of VHDL

Related Features:

 eu.mades.marteHardware2MHS.feature

D4.4 Model Transformation Tools- Final Version 2/29/2012

11(32)
Copyright © MADES Consortium

 eu.mades.mhs.feature

The code generation features of the MADES approach are supported by an automatic

hardware generation flow. This flow allows the generation of hardware descriptions

of target architectures from the design models. The approach is as follows:

MHS
AnvilJ Architecture

Definition

MADES Design models
Architecturally-neutral

software

Model transformation Model transformation

VHDL

MHS to VHDL
(not part of the MADES approach)

Architecture-specific
software

AnvilJ

Executes on

Figure 3 – The MADES software generation flow is supported by the hardware genera-

tion flow

The stereotypes in the MADES language allow hardware models created by the sys-

tem designer to be translated via the MADES tool flow into implementable hardware

description languages (i.e. VHDL). This is done in parallel with the MADES software

generation flow, which takes architecturally-neutral input Java code and remaps it

over the generated architecture through another set of MADES translations.

The approach is therefore:

1. The user writes input software without consideration for the final architecture.

2. As described in the rest of this document, the user models the input software,

the desired target architecture, and the mappings between the input software

and the target architecture (threads to processors, data to memory etc.)

3. The MADES approach automatically refactors the input code so that it will

correctly execute on the target architecture.

4. The approach automatically generates an implementation of the target archi-

tecture that will support the generated code.

In order to best demonstrate the flexibility of the hardware generation flow, the trans-

lations target Xilinx FPGAs. This is merely an implementation choice and does not

reflect any part of the flow which inherently requires Xilinx devices and tools or

FPGAs in general. Other implementation structures can be easily supported.

D4.4 Model Transformation Tools- Final Version 2/29/2012

12(32)
Copyright © MADES Consortium

The transformation outputs a Microprocessor Hardware Specification (MHS) file

which is passed to Xilinx Platgen, a tool that is part of Xilinx’s Embedded Develop-

ment Kit design tools. Platgen is a one-click tool which reads an MHS file and outputs

VHDL and then implements it as a configuration file for Xilinx FPGAs. For more ad-

vanced FPGA development the MHS files can also be loaded directly into Xilinx’s

design tools for examination and editing, but the MADES flow does not require this

and is fully-automated.

1.8 Code Generation for Verification & Simulation

Related Features:

 eu.mades.verification.feature

 eu.mades.simulation.feature

Verification of system properties at the different phases of the development process

plays a key role in the MADES approach. The formal verification tool used is the Zot

Bounded Model/Satisfiability checker
3
. A detailed description of Zot’s functionality

and architecture can be found in deliverable D3.4 “Verification Framework”. Zot

takes as input specifications written in a variety of temporal logics (e.g. TRIO, LTL,

MTL, CLTLB), and determines whether they are satisfiable or not. One of the goals

of the MADES project is to enable the formal verification of system properties with

reduced effort. One way to achieve this is to hide the complexity of the formal models

from the domain experts and allow them to specify the system of interest in a notation

they are familiar with. To this end, the MADES approach uses model transformations

to provide a seamless integration between design models expressed in the MADES

notation and the Zot verification tool.

The MADES verification workflow is illustrated in Figure 4. This workflow consists

of three main components. The first component is the system design component. Us-

ing the modelling tools of the MADES approach the user is able to model the differ-

ent aspects of the system using the UML profile of MADES. The second component

of the workflow is the formal verification component, which provides the tools for

performing formal verification of system properties. Between the two aforementioned

components is the transformation tool, which bridges the gap between the MADES

notation and the Zot API.

3
 http://home.dei.polimi.it/pradella/Zot

D4.4 Model Transformation Tools- Final Version 2/29/2012

13(32)
Copyright © MADES Consortium

Figure 4 - MADES Verification Workflow (D3.4 "Verification Framework")

Figure 5 shows the main components and the workflow of the transformation tool.

Figure 5 - Transformation Tool Workflow (D3.4 "Verification Framework")

The whole transformation process starts from an XMI file produced by the MADES

modeller. This file contains the MADES models, which describe structural and behav-

ioural aspects of the system under consideration. In the context of verification, this

XMI file can be used as input to a model transformation (which is called xmi2java in

the figure) in order to generate Java code. This code instantiates a set of objects im-

plementing the primitives that are needed to produce the Zot script. The java file pro-

duced by the xmi2java transformation must be compiled and then executed for the Zot

verification script to be produced.

1.9 Code Generation with Compile Time Virtualisation

Related Features:

 eu.mades.anvilJ

The code generation activities of the MADES approach enable developers to write

architecturally neutral Java code, which can then be automatically refactored to target

complex, heterogeneous, embedded architectures. This greatly simplifies embedded

software development. The tool, which achieves this, is called AnvilJ, an

implementation of the Compile-Time Virtualisation technique. Without a system like

Property	

holds

Property

does	not	hold

+

counterxample

Property

MADES	

Model

System	Design

Formal	Verifica on

Verifica on	

Script

Formal	Verifica on

Tool

XMI	FileModelling	Tool

Transforma on

Tool

Verifica on

Parameters

MADES

Formal

Seman cs

XMI	File
Java	compiler

+	JVM
Java	Filexmi2java

Verifica on	

script

D4.4 Model Transformation Tools- Final Version 2/29/2012

14(32)
Copyright © MADES Consortium

AnvilJ, Java programs are restricted to executing within a simple Java Virtual

Machine (JVM). This has the effect of limiting the architectures supported by Java to

those architectures over which an existing JVM can execute. AnvilJ refactors a single

input Java program into a set of output programs, each of which runs in its own JVM,

and can make use of complex hardware features that are normally unavailable to the

Java programmer. These include:

 Multiple, heterogeneous processors with differing capabilities and speeds.

 Complex memory hierarchies with regions of both shared and non-shared

memory that may be different for each processor of the system.

 Non-standard communications topologies in which not every processor can

directly communicate with each other processor, or in which some

communication links may perform differently to others.

These architectures are the kind of complex embedded architecture, which is

generated by the MADES hardware generation tool chain.

AnvilJ allows the programmer to influence the way in which it refactors the input

program. Rather than rely on profiling or similar analysis tools, the user provides an

Architecture Specification file (detailed later). This file describes the input

architecture and maps elements of the input program over it. For example, this file can

be used to place particular system threads onto specific processors of the system, or to

place instances of shared data structures in specific memory spaces of the system.

1.9.1 AnvilJ System model

In order to use AnvilJ it is necessary to understand the concepts of AnvilJ threads and

AnvilJ shared object instances (henceforth simply shared objects to maintain the same

terminology used in existing CTV literature).

AnvilJ Threads:

- AnvilJ threads are standard Java threads that are instances of java.lang.Thread

(or a class which descends from it). A thread is considered an AnvilJ thread if

it is mapped by the Architecture Specification.

- AnvilJ threads can be mapped to a specific node of the target architecture, in

contrast to standard Java in which threads are created on the same node as the

code which instantiated it.

- Other code can safely interact with AnvilJ threads regardless of their relative

locations. Code can call the thread's methods, start it, and join it. The AnvilJ

refactoring engine alters the input program to correctly negotiate the target

architecture and ensure that the program operates as if it were hosted on a

single JVM.

AnvilJ shared objects:

 Like AnvilJ threads, AnvilJ shared objects are object instances which are

mapped to a specific node of the architecture by the Architecture

Specification. Unlike threads, they may be of any class.

 Shared objects export their methods and fields for calling by remote (and

local) threads, AnvilJ or otherwise.

D4.4 Model Transformation Tools- Final Version 2/29/2012

15(32)
Copyright © MADES Consortium

 All inter-node communications in the program must use AnvilJ shared objects

(or AnvilJ threads). For more information see the section "Restrictions on

input code" below.

1.9.2 Using AnvilJ

The development process using AnvilJ is described as follows:

 The user creates a standard Java program, conforming to the limitations

described in section "Restrictions on input code".

 The program is linked to the AnvilJ runtime by including anvilj.jar in the

program's classpath. (See the documentation of the Java development

environment being used for information on how to do this.)

 An Architecture Specification (described in section “Architecture

Specifications”) is created. The Architecture Specification details the target

architecture, and defines where AnvilJ object should be placed throughout it.

In the MADES toolflow, this specification may be automatically generated

from the hardware and software design models. For more information see

section "Generating Architecture Specifications". Otherwise, the Architecture

Specification can be written manually.

 The user initiates the AnvilJ refactoring process, which is integrated as part of

the development environment.

 The AnvilJ refactoring engine examines the input code to ensure that it is

correct. If any errors are identified then the user is informed. Equally, the

Architecture Specification is examined and checked for consistency against

the input program. Any errors are reported to the user for corrections.

 Once the system is error-free, the refactoring is performed.

 The result of the refactoring is that the single input Java project is refactored

into a set of output Java projects, one for each node of the target architecture.

 Each project is a self-contained, correct, Java program which is ready to be

compiled and executed on the respective nodes of the target architecture.

These programs will all execute together, displaying the same functional

properties as the input program but being targeted for the complex architecture

that the input program would have failed on.

D4.4 Model Transformation Tools- Final Version 2/29/2012

16(32)
Copyright © MADES Consortium

1.9.2.1 Architecture Specifications

Format

An AnvilJ program must be provided with an Architecture Specification, which is an

XML file that describes the target architecture and maps AnvilJ objects (threads and

shared objects) onto the nodes of the architecture.

The Document Type Declaration of the Architecture Specification is as follows:

Attribute Meanings

The attributes in the Architecture Specification have the following meaning:

 architecture

Á name: A freeform string which is used to identify the architecture

being specified.

Á mainclass: The name of the Java class which is the main class of the

system. This is provided fully-qualified using dot notation, so the name

of class Class in package Package is Class.Package.

Á maincpu: The ID upon which the main thread (the implicit starting

thread of the system) is mapped. This ID should be defined below as

the ID of a cpu object.

 cpu

Á name: A freeform string which is used to identify the processor being

specified. This is used as part of the name of the output projects, so

avoid the use of special characters.

<!ELEMENT architecture (cpu*)>

<!ELEMENT cpu (thread*, sharedobject*)>

<!ELEMENT thread EMPTY>

<!ELEMENT sharedobject EMPTY>

<!ATTLIST architecture name CDATA #REQUIRED>

<!ATTLIST architecture mainclass CDATA #REQUIRED>

<!ATTLIST architecture maincpuid CDATA #REQUIRED>

<!ATTLIST cpu name CDATA #REQUIRED>

<!ATTLIST cpu id CDATA #REQUIRED>

<!ATTLIST thread id CDATA>

<!ATTLIST thread binding #REQUIRED CDATA>

<!ATTLIST sharedobject id CDATA>

<!ATTLIST sharedobject binding #REQUIRED CDATA>

D4.4 Model Transformation Tools- Final Version 2/29/2012

17(32)
Copyright © MADES Consortium

Á id: The ID of the specified CPU. All CPUs in the system must have

unique IDs.

 thread

Á id: (Optional) The ID of the specified thread. If not included, an ID

will be automatically generated. Must be unique from all other thread

and shared object IDs.

Á binding: The binding key of the thread, used to bind this AnvilJ thread

to the object instance in the source code that it refers to. (See section

“Binding Keys”)

 sharedobject

Á id: (Optional) The ID of the specified shared object instance. If not

included, an ID will be automatically generated. Must be unique from

all other thread and shared object IDs.

Á binding: The binding key of the shared object, used to bind this AnvilJ

shared object to the object instance in the source code that it refers to.

(See section “Binding Keys”)

Á

1.9.2.2 Example Architecture Specification

An example of a valid architecture.xml is as follows:

This Architecture Specification declares an architecture of two nodes with IDs 0 and 1

respectively. Node 0 contains two AnvilJ threads (one specified with a thread object

and the main thread) and one AnvilJ shared object. Node 1 contains a further AnvilJ

thread. These elements are bound to source code elements using the binding attribute

of thread and sharedobject objects.

1.9.2.3 Binding Keys

Bindings are a way of uniquely identifying source code elements and are defined by

the Eclipse JDT project [2]. To get the binding for a specific source element, AnvilJ

provides the following method:

<architecture name="Testarchitecture" mainclass="main.Main" maincpuid="0">

<cpu name="CPU0" id="0">

<thread binding="Lmain/Main;.th0)Ljava/lang/Thread;"></thread>

<sharedobject binding="Lmain/Main;.workQueue;"></sharedobject>

</cpu>

<cpu name="CPU1" id="1">

<thread binding="Lmain/Main;.th1)Ljava/lang/Thread;"></thread>

</cpu>

</architecture>

D4.4 Model Transformation Tools- Final Version 2/29/2012

18(32)
Copyright © MADES Consortium

1. When editing the source code of the input program, place the edit cursor at the

name of the instance for which the binding is required. For example in the

following code:

Thread myThread = new Thread();

The edit cursor should be within the word ‘myThread’.

Figure 6 – Select the name of the element for which the binding is

required

2. From the context (right-click) menu, select “AnvilJ – Get binding

information”.

3. AnvilJ will resolve the name at the current cursor position to a Java element

(in this case an instance of the Thread class) and determine its binding key.

This will be printed in Eclipse’s console, and a message box will also pop up

containing the binding key.

Figure 7 - The binding key is displayed in a popup box, and can be copied from the

console

D4.4 Model Transformation Tools- Final Version 2/29/2012

19(32)
Copyright © MADES Consortium

4. This binding can then be used in the Architecture Specification.

If an element is declared in the Architecture Specification but not included in the

source then the refactoring warns the user.

1.9.3 Restrictions on input code

In order to be correctly refactored, AnvilJ input programs must be written to conform

to a small set of restrictions, which are detailed in this section. Unless otherwise

stated, the AnvilJ refactoring engine will check that these are observed at refactoring

time, and will inform the programmer if any are violated.

 AnvilJ objects must be static final fields

 AnvilJ threads and shared objects must be declared as static final fields.

This means that the refactoring engine can determine at compile-time their

location and number, which is not in general possible otherwise.

//Correct

static final Thread myThread = new Thread();

//Incorrect

int main(void) {

 Thread myThread;

}

 AnvilJ objects must be accessed by direct static reference

 All accesses to an AnvilJ object must directly refer to the field (using dot

notation if the reference is in another class). It is forbidden to 'leak' a

reference to an AnvilJ object, for example by returning it from a method,

passing it to a method, or assigning it to a local variable of another class.

Any of these actions will be checked by the refactoring engine and

prevented.

//Correct

MyDefinitions.myThread.start();

//Incorrect

Thread getThread() {

return MyDefinitions. myThread; //This is not permitted

//if myThread is an AnvilJ Instance

}

int main (void) {

 getThread.start();

D4.4 Model Transformation Tools- Final Version 2/29/2012

20(32)
Copyright © MADES Consortium

}

 Arguments and return values of shared methods must be serialisable

 The arguments and return values of shared methods that are exported by an

AnvilJ thread or shared object must implement the java.io.Serializable

interface, or a descendent interface. The refactoring engine will attempt to

check this, but it is not always possible. When abstract classes are used in

method signatures (like java.util.List) it cannot determine statically the

concrete class which will be used to implement it at runtime. java.util.List

is not serialisable, but all standard implementations of it are (such as

java.util.ArrayList). If the refactoring engine cannot determine for certain

that an argument is serialisable it will emit a warning and the programmer

can determine if this can be ignored, or if the signature should be rewritten

to use a concrete class.

// If sharedInstance is an AnvilJ Instance:

//Works, but will give a warning

static final List<Integer> sharedInstance;

//Preferred as ArrayList is the concrete class

static final ArrayList<Integer> sharedInstance;

 Threads on different nodes must only use other AnvilJ objects to communicate

 Java threads may perform any action that only affects the local JVM.

However, if it wishes to communicate with an object instance which is

located on a different node, that instance must be tagged as an AnvilJ

shared object (or thread). This includes calling methods and accessing

fields.

static final MyThread th0; //AnvilJ Thread assigned to CPU0

static final MyThread th1; //AnvilJ Thread assigned to CPU1

ArrayList<Integer> sharedData;

class MyThread extends Thread {

 public void run(void) {

//Access sharedData

//Write to sharedData

}

}

This code snippet above is wrong. The two threads th0 and th1 communicate using

the sharedData instance, but sharedData is not an AnvilJ Instance. It should be

mapped in the architecture description, and recoded as a static final.

D4.4 Model Transformation Tools- Final Version 2/29/2012

21(32)
Copyright © MADES Consortium

1.10 Code Generation and Traceability

Related Features:

 eu.mades.traceability.feature

Traceability is the ability to interrelate uniquely identifiable entities in a way that mat-

ters. It refers to the capability for tracing artefacts along a set of chained operations,

where these operations may be performed manually (e.g., crafting a software design

for a set of software requirements) or with automated assistance (e.g., generating code

from a set of abstract descriptions). In the context of MADES, management of trace

links is essential for debugging, verification and validation purposes. To support

traceability, we have extended the transformations implemented in the other Eclipse

features of the MADES project so as to derive trace links (which connect source and

target model elements) as a side-effect of applying the transformation. These trace

links will be generated externally and stored as a separate model that can then be ana-

lysed and processed more easily, e.g., for visualisation or for narrowing down the

scope of changes that need to be made. This can be achieved by using the Epsilon

family of languages to query and modify the various models.

In the spirit of MDE, the traceability models, which will be generated by the trans-

formations, have to conform to a metamodel. To this end, we have developed a initial

version of this traceability metamodel, which is illustrated in Error! Reference

source not found..

Figure 8 Traceability Metamodel

Every traceability model (Trace) consists of trace elements (TraceElements). The

trace elements have a source, which points to the model element used to generate a

piece of code. Moreover, they have a start and a finish, which uniquely identify the

piece of code generated by the model element (source). Models, which conform to

this metamodel, will be generated automatically whenever a transformation is execut-

ed. This model can be then queried in order to retrieve useful information. For exam-

ple, if the developer wishes to find the code generated by a particular model element

after the execution of a transformation, she can execute the following query, written

in the EOL
4
:

4
 EOL: Epsilon Query Language

D4.4 Model Transformation Tools- Final Version 2/29/2012

22(32)
Copyright © MADES Consortium

This piece of EOL code iterates all model elements in the traceability model, and if

the model element is the one the developer is interested in (in this example it is the

Foo element), it returns the start and finish of the generated code.

for (e in TraceElement.allInstances){

 if (e.source= 'Foo'){

 e.start.println();

 e.finish.println();

 }

}

D4.4 Model Transformation Tools- Final Version 2/29/2012

23(32)
Copyright © MADES Consortium

2 Installation of MADES Model Transformation and Code

Generation Tools

In the previous section, we have presented the various features of the MADES model

transformation and code generation component. In this section, we will describe, how

this component can be installed.

2.1 Prerequisites

To install the tool the following are required:

 Java Development Kit 6 available at:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

 Eclipse Modelling Tools Indigo available at:

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1

 Eclipse Papyrus available at:

http://www.eclipse.org/modeling/mdt/papyrus/downloads/index.php

 Epsilon: http://www.eclipse.org/gmt/epsilon/download/

To generate VHDL specifications, the Xilinx Embedded Development tools are also

required. They can be downloaded from the following URL:

 Xilinx Embedded Development Tools:

http://www.xilinx.com/tools/embedded.htm

2.2 Eclipse Plug-ins

All the required plugins of the code generation tools can be installed, by using the

Eclipse local update site, which can be found at the following URL:

 http://code.google.com/p/the-mades-project/downloads/list

2.3 Installation instructions

2.3.1 Install JVM

Since the tool is built atop Eclipse, you will need to have Java installed to run Eclipse.

Eclipse can run on a number of Java Virtual Machines. The recommended version of

Java is version 6 (1.6).

Oracle's Java is available in two main distributions: the Java Runtime Engine (JRE)

and the Java Development Kit (JDK). Either of these distributions is suitable for run-

ning the tool.

Choose the Java distribution depending on the operating system on which you intend

to install Java. Instructions about the installation for the different operating systems

can be found on the Java website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1
http://www.eclipse.org/modeling/mdt/papyrus/downloads/index.php
http://www.eclipse.org/gmt/epsilon/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

D4.4 Model Transformation Tools- Final Version 2/29/2012

24(32)
Copyright © MADES Consortium

2.3.2 Install the MADES Eclipse Bundle

To install the MADES Eclipse bundle, you just need to unzip the contents of the

WP4Tool.zip in the directory of your preference.

2.3.3 Download and Install Xilinx Embedded Development Tools

The process of downloading and installing the Xilinx tools and acquiring a valid li-

cence is detailed by Xilinx in this document:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/irn.pdf

The transformations included in this initial version of the tool have been developed

against version 11.4 of Xilinx, Earlier versions may not contain all the required IP

cores and so the resulting MHS files would require slight adjustments.

2.3.4 Install WP4 Plug-ins

1. Download the latest update site archive from Google Code.

2. Unzip the archive.

3. In Eclipse, choose Help > Install New Software...

4. In the "Work with" section, click the Add... button. The "Add Repository"

dialog box appears.

5. Click Local and select the directory you unzipped, then click OK. Its path

appears in the "Location" field. Leave the "Name" field empty.

6. Click Next to review the list of items to be installed, click Next again to

read and accept the license agreements, then click Finish. Eclipse will then

install any external dependencies, and add the chosen components to the

Eclipse installation.

7. When asked, restart Eclipse.

8. The plugins should now be installed!

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/irn.pdf

D4.4 Model Transformation Tools- Final Version 2/29/2012

25(32)
Copyright © MADES Consortium

3 Getting Started

The goal of this section is to provide the user with a brief example of how to use as-

pects of he tool.

3.1 Creating a MARTE Hardware Model

In the MADES approach, two modellers are used – Modelio and the OSM.

3.1.1 Modelio

In the case Modelio is used the Hardware model has to be exported in .xmi format and

then this xmi file has to be imported in Eclipse. A description of how to create a

Hardware diagram and then export it in xmi in Modelio is provided in deliverable

D2.3 “Modelling Tools – Final Version”. To import the xmi file in Eclipse please fol-

low these steps:

1. Go to File ĄNew ĄOther Ą Papyrus Project…

2. Click Next

3. Enter a name for your project in the Location and click Next

4. Choose UML from the list of available languages and click Finish

5. Right click the project you have just created and choose Import from the menu

6. Select the File System as an input source and press Next

7. Specify the directory and the model file you want to import ...

8. Press Finish

9. The model is imported in your project

3.1.2 OSM

In the case OSM is used the Hardware model can be either developed in the OSM or

it can be imported from another source. The process of importing the model from an-

other source is identical to the one described in the previous section. The process of

developing a hardware model in the OSM is described in deliverable D1.5 “MADES

Intermediate Approach Guide” in the third scenario of the OSM section.

D4.4 Model Transformation Tools- Final Version 2/29/2012

26(32)
Copyright © MADES Consortium

Figure 9 Hardware Model in the OSM

3.2 Transform the MARTE Hardware model to an MHS Specification

Once the hardware model is in the Eclipse environment, it can be transformed to an

MHS specification by right clicking the .uml file or the .xmi file and then choosing

MADES Code Generation Ą Generate MHS. By executing the transformation a

file with an .mhs extension is created in the project which contains the UML model.

To inspect or edit this file, you can open it in the dedicated MHS editor for Eclipse.

D4.4 Model Transformation Tools- Final Version 2/29/2012

27(32)
Copyright © MADES Consortium

3.3 Generate Hardware Description from an MHS Specification

To generate a low-level hardware description from the MHS specification , the Xilinx

tool ‘Platgen’ must be run from a Xilinx command prompt with the following options:

platgen -p xc3s500efg320-4 -lang vhdl <mhsfile>

These options tell Platgen to build the hardware for a chip of the Spartan 3e architec-

ture (the xc3s500e). Other architectures are largely identical but will require slight

changes for the MPMC component. Support for other architectures will be added in

later versions.

Platgen will create the following:

1. An 'hdl' directory with wrapper VHDL files to instantiate the components in

the MHS and connect them as directed.

2. A 'synthesis' directory with scripts for running the Xilinx synthesis tools on

the VHDL.

3. An 'implementation' directory into which synthesis results will be placed.

4. Numerous log files and temporary files.

After generation of the above files, platgen will then automatically begin subcompo-

nent synthesis. After synthesis is complete, execute the synthesis/synthesis.sh script to

synthesise, and build the NGC file of the top-level design (implementa-

tion/<mhsfile>.ngc). This can then be mapped, placed, and routed according to your

preferred FPGA design flow.

Note that a user constraints file should be created in data/system.ucf to map external

signals to the I/O pins of the FPGA. Refer to the Embedded System Tools Documen-

tation and the Xilinx ISE tool
5
 to assist with this.

3.4 Generate HTML documentation

Assume the user has a model from which she wants to generate documentation. This

model can be built using the OSM or it can be imported from Modelio. This is de-

scribed in section 3.1. For this example, we have imported the model of the car colli-

sion avoidance system described in deliverable D1.5 from Modelio. To generate doc-

umentation for this Model the user only has to right click on it and then choose

MADES Ą Generate HTML. The result of this action will be the generation of the

HTML file and its accompanying libraries in the Eclipse folder as shown in figure

5 http://www.xilinx.com/tools/embedded.htm

http://www.xilinx.com/tools/embedded.htm

D4.4 Model Transformation Tools- Final Version 2/29/2012

28(32)
Copyright © MADES Consortium

Figure 10 Generating HTML Documentation for UML Model

4 Requirements Coverage

Req ID Title Source Author Status

R 6.1 Tracking of requirements’
changes

TXT as is
situation

TXT Implemented

R 6.2 Documentation of
requirements’ changes

TXT as is
situation

TXT Implemented

R 6.3 Implementation Tracing TXT as is
situation

TXT Implemented

R 6.4 Trace Verification TXT as is
situation

TXT Implemented

R 6.5 Test Tracing TXT as is
situation

TXT Implemented

R 6.6 Code Generation TXT as is
situation

TXT Implemented

D4.4 Model Transformation Tools- Final Version 2/29/2012

29(32)
Copyright © MADES Consortium

5 Bug Reports

If you find a bug and want to report it or if you want to request a new feature please

use the MADES Bugzilla which can be found at the following URL:

http://demos.txt.it/mades_project_bugzilla/

Before reporting a bug or requesting a feature, please make sure if this has been al-

ready reported. To check whether an issue for your problem has been created, go to

the issue tracker and read through the list of open issues. If you see anything that

could be related, click on the issue report and examine its details

Writing a bug report consists of three steps:

1. First, write a step-by-step procedure that can repeatedly replicate the prob-

lem. “Replicate” means that a developer can read your issue, perform the

steps you listed and see the bug immediately. “Repeatedly” means that the

developer can perform this sequence as many times as necessary and the

bug will always show up. If the developer would need access to the file you

were editing when the problem occurred to fully understand what happened

(this is practically always), then attach that file to the issue.

2. Next specify what version of the tools you are using, and on which platform.

3. Finally describe what the expected and actual outputs are

Once a bug report is created it will be accepted or rejected. If it’s accepted, a fix for it

will be developed.

D4.4 Model Transformation Tools- Final Version 2/29/2012

30(32)
Copyright © MADES Consortium

6 Conclusion

This document focused on the tools developed within workpackage four of the

MADES project. The final version of the tools supports different aspects of the

MADES approach, such as code generation for verification/simulation or compile

time virtualisation. Moreover it supports dedicated mechanisms to capture traceabil-

ity information for the artefacts generated by the tools presented in this document.

In section 1, the various features of the code generation and model transformation

component were presented. Next an installation guide for the tool was provided and

finally different usage scenarios were described. More detailed scenarios as well a

user guide for the different aspects of the tool can be found in D1.5 “ MADES Inter-

mediate Approach Guide”. These usage scenarios will be refined in D1.7 “MADES

Final Approach Guide”.

D4.4 Model Transformation Tools- Final Version 2/29/2012

31(32)
Copyright © MADES Consortium

7 Acronyms

Table 1 Acronyms Tables

BPEL Business Process Execution language

BPM Business Process Management

BPMN Business Process Management Notation

CSS Cascading Style Sheets

CT Cluster Target

CTV Compile Time Virtual

EMF Eclipse Modelling Framework

ETL Epsilon Transformation Language

FPGA Field Programmable Gate Array

GEF Graphical Editing Framework

GMF Graphical Modelling Framework

HAML Hardware Architecture Modelling Language

HDG Hardware Description Generation

HTML Hypertext Markup Language

IDE Integrated Development Environment

JSP Java Server Pages

MARTE Modelling and Analysis of Real-time and Embedded Systems

MHS Microprocessor Hardware Specification

OCL Object Constraint Language

OMG Object Management Group

OSM MADES Open Source Modeller by UY

RCP Rich Client Platform

RPC Remote Procedure Call

SBVR Semantics of the Business Vocabulary and business Rule

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SysML System Modelling Language

TML Traceability Metamodelling Language

UML Unified Modelling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VP Virtual Platform

WSDL Web Service Description Language

XMI XML Metadata Interchange

XML Extensible Markup Language

D4.4 Model Transformation Tools- Final Version 2/29/2012

32(32)
Copyright © MADES Consortium

XSD XML Schema Definition

