
 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 1

Table of Contents

Chapter No.1 Java Fratures 12
1.1 Designing Goals of Java 12
1.2 Right Language, Right Time 12

1.3 Java Buzzwords 12
1.4 Java Language + Libraries 12
1.5 Simple 12
1.6 Object Oriented 13

1.7 Distributed/N etwork Oriented 13
1.8 Robust/ Secure/Safe 13
1.9 Portable 14
1.10 Support for Web & Enterprise Web Applications 14

1.11 H igh Performance 14
1.12 Multi Threaded 14
1.13 Dynamic 14
1.14 Java Compiler Structure 14

1.15 Java Programmer Efficiency 15
1.16 OOP 15
1.17 Libraries 15
1.18 Microsoft vs. Java 15

Chapter No.2 Java Virtual Machine & Runtime Enviornment 16
2.1 Basic Concepts 16

2.2 Byte Code 17
2.3 Java Virtual Machine (JVM) 17
2.4 Java Runtime Environment (JRE) 18

2.5 Java Program Development and Execution Steps 19
2.5.1 Edit 20
2.5.2 Compile 20
2.5.3 Loading 20

2.5.4 Verify 21
2.2.5 Execute 21

2.6 Installation & Environment Setting 22
2.6.1 Installation 22

2.6.2 Environment Setting 22
2.7 First Program in Java 26
2.8 H elloWorldApp 26
2.9 HelloWorldApp Description 27

2.10 Compiling & Running HelloWorldApp 28
2.11 Points to Remember 28
2.12 An Idiom Explained 29

Chapter No.3 Learning Basics 30
3.1 Strings 30

3.1.1 String Concatenation 30
3.1.2 Comparing Strings 30

3.2 Command Line Arguments 32
3.3 Primitives vs. Objects 34

3.4 Stack vs. Heap 34

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 2

3.5 Wrapper Classes 35

3.6 Wrapper Use 35
3.7 Converting String to Numeric Primitive Data Types 35

3.8 Input / Output Example 37
3.9 Selection & Control Structure 38

Chapter No.4 Object Oriented Programming 40
4.1 OOP Vocabulary Review 40

4.1.1 Class 40

4.1.2 Object 40
4.1.3 Constructor 40
4.1.4 Attributes 40

4.1.5 Methods 40

4.2 Defini ng a Class 41
4.3 Comparison with C++ 41
4.4 Defini ng a Student Class 43
4.5 Getters/ Setters 43

4.6 Using a Class 45
4.7 Static 47
4.8 Garbage Collection & Finalize 47

Chapter No.5 Inheritance 52
5.1 Comparison with C++ 52

5.2 Object (Root Class) 56
5.3 Polymorphism 57
5.4 Type Casting 59

5.4.1 Up-Casting 59

5.4.2 Down-Casting 59

Chapter No.6 Collections 60
6.1 Collection Design 60

6.2 Collection Messages 60
6.3 ArrayLi st 61

6.3.1 Useful Methods 61
6.4 H ashMap 62

6.4.1 Useful Methods 62
6.5 Address Book 65

6.5.1 Problem 65
6.5.2 Approach for Solving Problem 65

Chapter No.7 Intro to Exceptions 70
7.1 Types of Errors 70

7.1.1 Syntax Errors 70

7.1.2 Logical Errors 70
7.3.1 Runtime Errors 70

7.2 What is an Exception? 70
7.3 Why Handle Exceptions? 70

7.4 Exceptions in Java 71
7.5 Exceptions Hierarchy 71
7.5 Types of Exceptions 72

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 3

7.6.1 try Block 72
7.6.2 catch block 72
7.6.3 finally block 72
7.6.4 throw 74
7.6.5 throws 74

7.5.1 Unchecked Exceptions 72

7.5.2 Checked Exceptions 72
7.6 How Java Handles exceptions 72

7.7 Examples of Unchecked Exceptions 75

7.8 Examples of Checked Exceptions 77
7.9 The finally Block 79

7.10 Multiple catch blocks 80
7.11 The throws clause 82
7.12 printStackTrace Method 83

Chapter No.8 Streams 85
8.1 The Concept of Streams 85

8.2 Types of Systems 86
8.3 Stream Classification Based on Functionality 86
8.4 Example of Reading from File 88
8.5 Example of Writing to File 89

Chapter No.9 Modification of Address Book Code 90
9.1 Adding Persistence Functionality 90

9.1.1 Scenario 1- Startup 90
9.1.2 Scenario 2- End/Finish up 93

9.2 Abstract Classes & Interfaces 96

9.3 Problems & Requirements 96
9.4 Abstract Classes 96

9.4.1 Example of Abstract Classes 97
9.5 Int erfaces 98

9.5.1 Defining an Interface 98
9.5.2 Implementing Interface 98
9.5.3 Example of Interface 98
9.5.4 Interface Characteristics 99

9.5.5 Example: Interface Based Polymorphism 100

Chapter No.10 Graphical User Interfaces 102
10.1 Support for GUI in Java 102

10.2 GUI Classes vs. Non GUI Support Classes 102
10.3 java.awt package 102

10.4 javax.swing package 102
10.5 A Part of the framework 103
10.6 GUI Creation Steps 104

10.6.1 import required package 104

10.6.2 Setup the Top Level Containers 104
10.6.3 Get the Component Area of Top Level Container 105
10.6.4 Apply Layout to Component Area 105
10.6.5 Create & Add Components 106

10.6.6 Set Size of Frame & Make it Visible 106

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 4

10.7 Making a Simple GUI 106

10.8 Important Points to Consider 108
10.9 Layout Managers 109

10.9.1 Flow Layout 109
10.9.2 Grid Layout 111
10.9.3 Border Layout 113

10.10 Making Complex GUIs 115

10.11 JPanel 115
10.12 Calculator GUI 116

Chapter No.11 Event Handling 119
11.1 Event Handli ng Model 120
11.2 Event H andling Steps 120

11.3 Event Handling Process 120
11.3.1 Event Generators 120
11.3.2 Event Handlers/Listeners 121
11.3.3 Registering Handler with Generator 123

11.4 How Event Handling Participants Interact Behind the Scene 125
11.4.1 Event Generator/Source 125
11.4.2 Event Object 125
11.4.3 Event Listener/Handler 125

11.4.4 JVM 125
11.5 Making a Small Calculator 127

Chapter No.12 More Examples of Handlin g Events 130
12.1 H andling Mouse Events 130

12.1.1 MouseMotionListener Interface 130

12.3 MouseListener Interface 130
12.4 Example: Handling Mouse Events 131
12.5 H andling Window Events 133

Chapter No.13 Problem in Last Code Example 136
13.1 Problem 136

13.2 Solution 136
13.3 Adapter Classes 136
13.4 Available Adapter Classes 137
13.5 How to Use Adapter Classes 137

13.6 Example 138
13.7 Problem in Example 139
13.8 Inner Classes 139
13.9 Handling Window Events with Inner Classes 140

13.10 Handling Window & Mouse Events with Inner Classes 141
13.11 Small Calculator Making Inner Classes 143
13.12 Anonymous Inner Classes 146
13.13 Named vs. Anonymous Objects 146

13.14 Handling Window Events with Anonymous Inner Class 147
13.15 Summary of Approaches for H andling Events 148

Chapter No.14 Java Data Base Connectivity 149
14.1 Int roduction 149

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 5

14.2 The java.sql package 149

14.3 Connecting with Microsoft Access 149
14.3.1 Create Database 149

14.3.2 Setup System DSN 150
14.4 Basic Steps in Using JDBC 151

14.4.1 Import Required Package 151
14.4.2 Load Driver 152

14.4.3 Define Connection URL 152
14.4.4 Establish Connection with Database 152
14.4.5 Create Statement 152
14.4.6 Execute Query 152

14.4.7 DELETE 153
14.4.8 Close the Connection 153

14.5 Retrieving Data from Resultset 153

Chapter No.15 More on JDBC 156
15.1 Useful Statement Methods 156

15.1.1 executeUpdate() 156
15.1.2 getMaxRows()/setMaxRows(int) 158
15.1.3 getQueryTimeOut()/s etQueryTimeOut(int) 158

15.2 Different Type of Statements 158

15.2.1 Statement 159
15.2.2 PreparedStatement 159
15.2.3 CallableStatement 159

15.3 PreparedStatement 159

Chapter No.16 Result Set 162
16.1 ResultSet 162

16.2 Default ResultSet 162
16.3 Useful ResultSetõs Methods 162

16.3.1 next() 163

16.3.2 getters 163
16.3.3 close() 163

16.4 Updatable &/or Sc rollable ResultSet 163
16.5 Getting Updatable & Scrollable ResultSet 163

16.5.1 previous() 164
16.5.2 absolute(int) 165
16.5.3 updaters 166
16.5.4 updateRow() 166
16.5.5 moveToInsertRow(int) 168
16.5.6 insertRow() 168
16.5.7 last() & first() 171
16.5.8 getRow() 171
16.5.9 deleteRow() 171

Chapter No.17 Meta Data 174
17.1 ResultSet Meta data 174

17.2 Getting ResultSet Meta Data Object 174
17.3 Useful ResultSetMetaData Methods 175

17.4 DataBaseMetaData 177

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 6

17.4.1 Creating DataBaseMetaData Object 177

17.5 JDBC Driver Types 179

Chapter No.18 Java Graphics 183
18.1 Painting 183

18.2 How Painting Works 183
18.3 Painting a Swing Component 186
18.4 Your Painting Strategy 187

Chapter No.19 How to Animate? 191
19.1 Problem & Solution 191

19.2 Coding Example 191
19.3 Ball Animation 195

Chapter No.20 Applets 199
20.1 Applets Support 199
20.2 What an Applet is? 199

20.3 The Genealogy of Applet 201
20.4 Applet Life Cycle Methods 202
20.5 Design Process 204
20.6 Generating Random Numbers 204

20.7 Programõs Modules 205
20.8 Merging Pieces 208

Chapter No.21 Socket Programming 211
21.1 Socket 211
21.2 Socket Dynamics 211

21.3 What is Port? 211
21.4 How Client Server Communicate 211
21.5 Steps to make a Simple Client 212
21.6 Steps to make a Simple Server 214

Chapter No.22 Serialization 219
22.1 What? 219

22.2 Motivation 219
22.3 Revisiting AddressBook 219
22.4 Serialization in Java 220

22.5 Serializable Interface 220
22.6 Automatic Writing 220
22.7 Automatic Reading 220
22.8 Serialization- How it Works? 220

22.9 Object Serialization & Network 222
22.10 Reading Objects over Network 223
22.11 Preventing Serialization 225

Chapter No.23 Multithreading 226
23.1 Introduction 226

23.2 Sequential Execution vs. Multithreading 226
23.3 Creating Threads in Java 228
23.4 Thread Creating Steps using Inheritance 228

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 7

23.5 Thread priority Scheduling 230
23.6 Problems with Thread Prioriti es 232

Chapter No.24 More on Multithreading 233
24.1 Reading Two Files Simultaneously 233

24.2 Threadsõ Joining 240

Chapter No.25 Web Application Development 242
25.1 Introduction 242
25.2 Web Applications 242

25.3 HTTP Basics 242
25.3.1 Parts of HTTP Request 243
25.3.2 Parts of HTTP Response 243

25.4 HTTP Response Codes 244

25.5 Server Side Programming 245
25.6 Why Build Pages Dynamically? 247
25.7 Dynamic Web Content Technologies Evolution 248
25.8 Layers & Web Applications 249

Chapter No.26 Java Servlets 250
26.1 What Servlets can do? 250

26.2 Servlets vs. other SSP Technologies 250
26.3 Software Requirements 251
26.4 Jakarta Servlet Engine (Tomcat) 251

26.5 Environment Setup 251
26.6 Environment Setup using .zip File 251
26.7 Environment Setup using .exe File 252

Chapter No.27 Creating a Simple Web Application in Tomcat 260
27.1 Slandered Directory Structure of a J2EE Web Application 260

27.2 Writing Servlets 262
27.3 Servlet Types 262
27.4 Servlet Class Hierarchy 263
27.5 Types of HT TP Requests 263

27.6 GET & POST HTTP Request Types 264
27.7 Steps for Making Hello World Servlet 264
27.8 Compiling & Invoking Servlets 266

Chapter No.28 Servlets Lifecycle 267
28.1 Stages of Servlet Lifecycle 267

28.2 Reading HTML Form Data Using Servlets 269
28.3 HTML & Servlets 270
28.4 Types of Data Send to Web Server 270
28.5 Reading HTML Form Data from Servlets 270

Chapter No.29 More on Servlets 275
29.1 Initialization Parameters 275
29.2 ServletConfig 275

29.3 Reading Initialization Parameters 276
29.4 Response Redirection 278

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 8

29.5 Sending a Standered Redirect 278

29.6 Sending a Redirect to an Error Page 278
29.7 ServletContext 281

29.8 Request Dispatcher 281

Chapter No.30 Dispatching Requests 284
30.1 Recap 284

30.2 Example Code- Request Dispatching- Include 284
30.3 Example Code- Request Dispatcher- Forward 289

30.4 HttpServletRequest Methods 293
30.5 HttpServletResponse Methods 294
30.6 Session Tracking 295

Chapter No.31 Session Tracking 297
31.1 Store State Somewhere 297

31.2 Post Notes 297
31.3 Three Typical Solutions 297
31.4 Cookies 298

31.4.1 What a Cookie is? 298

31.4.2 Cookieõs Voyage 298
31.4.3 Potential Uses of Cookies 298
31.4.4 Sending Cookies to Browser 299
31.4.5 Reading cookies from Client 299

Chapter No.32 Session Tracking 2 308
32.1 URL Rewriting 308

32.2 Disadvantages of URL Rewriting 308
32.3 How to Make a QueryString 308
32.4 Hidden Form Fields 312

32.5 Java Solution for Session Tracking 312
32.6 Working with Htt pSession 313
32.7 HttpSession- Behind the Scenes 316
32.8 Encoding URLs sent to Client 317

32.9 Difference between encodURL() & encodeRedirectURL() 317
32.10 Some Methods of Ht tpSession 317

Chapter No.33 Case Study Using Servlets 321
33.1 Design Process 321
33.2 Layers and Web Application 321

33.3 Package 328
33.4 What is a Package? 328
33.5 How to Create a Package? 328
33.6 How to use Package? 329

33.7 JavaServer Pages (JSP) 330
33.8 The Need for JSP 330
33.9 JSP Framework 330
33.10 Advantages of JSP over Competing Technologies 330

33.11 Setting Up Your Environment 331

Chapter No.34 Java Server Pages 1 332

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 9

34.1 First run of a JSP 332

34.2 Benifits of JSP 332
34.3 JSP vs. Servlet 333

34.4 Scripting Elements 335
34.5 Comments 335
34.6 Expressions 335
34.7 Scriplets 335

34.8 Declarations 336
34.9 Writing JSP Scripting Elements in XML 337

Chapter No.35 Java Server Pages 2 339
35.1 Implicit Objects 339
35.2 JSP Directives 344

35.3 JSP Page Directive 344
35.4 JSP Include Directive 345
35.5 JSP LifeCycle Methods 348

Chapter No.36 Java Server Pages 3 349
36.1 Displaying Course Outline 349

36.2 Java Beans 356
36.3 Java Beans Design Conventions 356
36.4 A Sample Java Bean 356

Chapter No.37 JSP Action Elements & Scope 367
37.1 JSP Action Elements 367

37.2 Working with JavaBeans using JSP Action Elements 368
37.3 JSP useBean Action Element 368
37.4 JSP setProperty Action Element 368
37.5 JSP getProperty Action Element 369

37.6 Sharing Beans & Object Scopes 372
37.7 Summary of Objectõs Scopes 375
37.8 More JSP Action Elements 377
37.9 JSP include action Element 377

37.10 JSP forward action Element 377

Chapter No.38 JSP Custom Tags 378
38.1 Motivation 378

38.2 What is a Custom Tag? 378
38.3 Why Build Custom Tag? 379

38.4 Advantages of Using Custom Tags 379
38.5 Types of Tags 379
38.6 Building Custom Tags 381
38.7 Building Tags with Attributes 384

Chapter No.39 MVC + Case Study 393
39.1 Error Page 393

39.2 Defining & Using Error Pages 393
39.3 Case Study- Address Book 394
39.4 Ingredients of Address Book 394

39.5 Program Flow 395

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 10

39.6 Model View Controller 408

39.7 Participants & Responsibilities 409
39.8 Evolution of MVC Architecture 409

39.9 MVC Model 1 409

Chapter No.40 MVC Model 2 Architecture 410
40.1 Page-Centric Approach 410

40.2 Page-with-Bean Approach 410
40.3 MVC Model 2 Architecture 410

40.4 Case Study: Address Book Using MVC Model2 412
40.5 Int roducing a JSP as Controller 413
40.6 How Controller Differentiate between Requests? 413
40.7 JSP is the Right Choice as a Controller? 428

40.8 Introducing a Servlet as Controller 428

Chapter No.41 Layers & Tiers 435
41.1 Layers vs. Tiers 435

41.2 Layers 435
41.3 Presentation Layer 436

41.4 Business Layer 436
41.5 Data Layer 437
41.6 Tiers 437
41.7 Layers Support in Java 438

41.8 J2EE Multi -Tiered Applications 439
41.9 Case Study: Matrix Multiplication Using Layers 440
41.10 Layer by Layer View 440
41.11 ControllerServlet 443

41.12 Matrix Multiplier 445
41.13 Matrix DAO 447

Chapter No.42 Expression Language 451
42.1 Overview 451
42.2 JSP before & after EL 451

42.3 Expression Language Nuggets 452
42.4 EL Syntax 452
42.5 EL Literals 453
42.6 EL Operators 453

42.7 EL Identifiers 454
42.8 EL Implicit Objects 454
42.9 Storing Scoped Variables 456
42.10 Retrieving Scoped Variables 457

42.11 EL Accessors 458
42.12 EL ð Robust Features 459
42.13 Using Expression Language 459

Chapter No.43 JSTL 468
43.1 Introduction 468

43.2 JSTL and EL 468
43.3 Functional Overview 468
43.4 Twin Tag Libraries 469

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 11

43.5 Using JSTL 469

43.6 Working with Core Actions (Tags) 470
43.7 c:set 470

43.8 Using with JavaBeans & Map 471
43.9 c:out 471
43.10 c:remove 472
43.11 c:forEach 472

43.12 Iteration over an Integer range 473
43.13 Iteration over a Collection 473
43.14 c:if 475
43.15 c:choose 475

43.16 netBeans 4.1 & JSTL 476

Chapter No.44 Client Side Validation & JSF 480

44.1 Client side Validation 480

44.2 Why is client side Validation Good? 480
44.3 Form Validation using JavaScript 480

44.4 JavaServer Faces 483
44.5 Different Existing Frameworks 483
44.6 javaServer Faces 483
44.7 JSF UI Components 483

44.8 JSF - Managed Bean-Intro 486
44.9 JSF ð Value Binding 487
44.10 JSF ð Method Binding 487
44.11 JSF Navigation 487

Chapter No.45 JavaServer Faces 488
45.1 Example Code 488

45.2 Web Services 488
45.3 Introduction 488
45.4 Web Services, Definition by W3C 488

45.5 Distributed Computing Evolution 488
45.6 Characteristics of Web Services 489
45.7 Types of Web Service 489
45.8 Comparison between Web Page & Web Service 490

45.9 Web Service Architectural Components 490

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 12

Lesson 1

JAVA FEATURES

This handout is a traditional introduction to any language features. You might not be able to comprehend
some of the features fully at this stage but donõt worry, youõll get to know about these as we move on
with the course

Design Goals of Java
The massive growth of the Internet and the World-Wide Web leads us to a completely new way of
looking at development of software that can run on different platforms like Windows, Linux and Solaris
etc.

Right Language, Right Time

Java came on the scene in 1995 to immediate popularity.

Before that, C and C++ dominated the software development

1. compiled, no robust memory model, no garbage collector causes memory leakages, not great
support of built in libraries

Java brings together a great set of "programmer efficient" features

2. Putting more work on the CPU to make things easier for the programmer.

Java ð Buzzwords (Vocabulary)
From the original Sun Java whitepaper: "Java is a simple, object-oriented, distributed, interpreted,
robust, secure, architecture-neutral, portable, high- performance, multi-threaded, and dynamic
language."

Here are some original java buzzwords...

Java -- Language + Libr aries

Java has two parts...
1. The core language -- variables, arrays, objects

o The Java Virtual Machine (JVM) runs the core language

o The core language is simple enough to run on small devices -- phones, smart cards,
PDAs.

2. The libraries
o Java includes a large collection of standard library classes to provide "off the shelf" code.

(Useful built-in classes that comes with the language to perform basic tasks)
o Example of these classes is String, ArrayList, HashMap, StringTokenizer (to

break string into substrings), Date ...
o Java programmers are more productive in part because they have access to a large set of

standard, well documented library classes.

Simple

Very similar C/C++ syntax, operators, etc.

The core language is simpler than C++ -- no operator overloading, no pointers, and no multiple
inheritance

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 13

The way a java program deals with memory is much simpler than C or C++.

Object-Oriented

Java is fundamentally based on the OOP notions of classes and objects.

Java uses a formal OOP type system that must be obeyed at compile-time and run-time.

This is helpful for larger projects, where the structure helps keep the various parts consistent. Contrast to
Perl, which has a more anything-goes feel.

Distributed / Network Oriented

Java is network friendly -- both in its portable, threaded nature, and because common networking
operations are built-in to the Java libraries.

Robust / Secure / Safe

Å Java is very robust

o Both, vs. unintentional errors and vs. malicious code such as viruses.

o Java has slightly worse performance since it does all this checking. (Or put the other way, C

can be faster since it doesn't check anything.)

Å The JVM "verifier" checks the code when it is loaded to verify that it has the correct structure --
that it does not use an uninitialized pointer, or mix int and pointer types. This is one-time "static"
analysis -- checking that the code has the correct structure without running it.

Å The JVM also does "dynamic" checking at runtime for certain operations, such as pointer and

array access, to make sure they are touching only the memory they should. You will write code
that runs into

Å As a result, many common bugs and security problems (e.g. "buffer overflow") are not possible

in java. The checks also make it easier to find many common bugs easy, since they are caught by
the runtime checker.

Å You will generally never write code that fails the verifier, since your compiler is smart enough to

only generate correct code. You will write code that runs into the runtime checks all the time as
you debug -- array out of bounds, null pointer.

Å Java also has a runtime Security Manager can check which operations a particular piece of code is
allowed to do. As a result, java can run un-trusted code in a "sandbox" where, for example, it can
draw to the screen but cannot access the local file system.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 14

Portable

"Write Once Run Anywhere", and for the most part this works.

Not even a recompile is required -- a Java executable can work, without change, on any Java enabled
platform.

Support for Web and Enterprise Web Applications

Java provides an extensive support for the development of web and enterprise applications
Servlets, JSP, Applets, JDBC, RMI, EJBs and JSF etc. are some of the Java technologies that can be
used for the above mentioned purposes.

High -performance

The first versions of java were pretty slow.

Java performance has gotten a lot better with aggressive just-in-time-compiler (JIT) techniques.

Java performance is now similar to C -- a little slower in some cases, faster in a few cases. However
memory use and startup time are both worse than C.

Java performance gets better each year as the JVM gets smarter. This works, because making the
JVM smarter does not require any great change to the java language, source code, etc.

Multi -Threaded

Java has a notion of concurrency wired right in to the language itself.

This works out more cleanly than languages where concurrency is bolted on after the fact.

Dynamic

Class and type information is kept around at runtime. This enables runtime loading and

inspection of code in a very flexible way.

Java Compiler Structure

The source code for each class is in a .java file. Compile each class to produce
ò.classó file.

Sometimes, multiple .class files are packaged together into a .zip or .jar "archive"
file.

On unix or windows, the java compiler is called "javac". To compile all the .java files in a directory use
"javac *.java".

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 15

Java: Programmer Effi ciency

Faster Development

Building an application in Java takes about 50% less time than in C or C++. So, faster time to market
Java is said to be òProgrammer Efficientó.

OOP

Java is thoroughly OOP language with robust memory system

Memory errors largely disappear because of the safe pointers and garbage collector. The lack of memory
errors accounts for much of the increased programmer productivity.

Libraries
Code re-use at last -- String, ArrayList, Date, ... available and documented in a standard way

Microsoft vs. Java

Microsoft hates Java, since a Java program (portable) is not tied to any particular operating

system. If Java is popular, then programs written in Java might promote non-Microsoft operating
systems. For basically the same reason, all the non- Microsoft vendors think Java is a great idea.

Microsoft's C# is very similar to Java, but with some improvements, and some questionable

features added in, and it is not portable in the way Java is. Generally it is considered that C# will be
successful in the way that Visual Basic is: a nice tool to build Microsoft only software.

merits.

Microsoft has used its power to try to derail Java somewhat, but Java remains very popular on its

Java Is For Real

Java has a lot of hype, but much of it is deserved. Java is very well matched for many modern
problems

Using more memory and CPU time but less programmer time is an increasingly appealing

tradeoff.

Robustness and portability can be very useful features

A general belief is that Java is going to stay here for the next 10-20 years

References

Majority of the material in this handout is taken from the first handout of course cs193j at

Stanford.

The JavaÊ Language Environment, White Paper, by James Gosling & Henry McGilton

Javaõs Sun site: http://java.sun.com
Java World: www.javaworld.com

http://java.sun.com/
http://www.javaworld.com/

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 16

Java Virtual Machine & Runtime Environment
Lesson 2

Basic Concept

When you write a program in C++ it is known as source code. The C++ compiler converts this source
code into the machine code of underlying system (e.g. Windows) If you want to run that code on Linux
you need to recompile it with a Linux based compiler. Due to the difference in compilers, sometimes you
need to modify your code.

Java has introduced the concept of WORA (write once run anywhere). When you write a java program it
is known as the source code of java. The java compiler does not compile this source code for any
underlying hardware system; rather it compiles it for a software system known as JVM (This compiled
code is known as byte code). We have different JVMs for different systems (such as JVM for Windows,
JVM for Linux etc). When we run our program the JVM interprets (translates) the compiled program into
the language understood by the underlying system. So we write our code once and the JVM runs it
everywhere according to the underlying system.

This concept is discussed in detail below

JAVA

Source

Code

Java Compiler javac

Java Byte

Code

Java Interpreter

Machine

Code

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 17

Bytecode

Java programs (Source code) are compiled into a form called Java bytecodes.

The Java compiler reads Java language source (.java) files, translates the source into
Java bytecodes, and places the bytecodes into class (.class) files.

The compiler generates one class file for each class contained in java source file.

Java Virtual Machine (JVM)

The central part of java platform is java virtual machine

Java bytecode executes by special software known as a "virtual machine".

Most programming languages compile source code directly into machine code, suitable for execution

The difference with Java is that it uses bytecode - a special type of machine code.

The JVM executes Java bytecodes, so Java bytecodes can be thought of as the machine language
of the JVM.

App1 App2 App3 App4 App5

Java Virtual Machine

Windows Linux OS X Solaris Linux

Intel PowerPC SPARC

Å JVM are available for almost all operating systems.

Å Java bytecode is executed by using any operating systemõs JVM. Thus achieve portability.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 18

Java Runtime Environment (JRE)

The Java Virtual Machine is a part of a large system i.e. Java Runtime Environment (JRE).

Each operating system and CPU architecture requires different JRE.

The JRE consists of set of built-in classes, as well as a JVM.

Without an available JRE for a given environment, it is impossible to run Java software.

References

Java World: http://www.j avaworld.com

Inside Java: http://www.javacoffeebreak.com/ articles/inside_java

http://www.javaworld.com/
http://www.javacoffeebreak.com/articles/inside_java

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 19

Memor
y

y

 Primary

Memor
y

Java Program Development and Execution Steps

Java program normally go through five phases. These are

1. Edit,
2. Compile,

3. Load,
4. Verify and
5. Execute

We look over all the above mentioned phases in a bit detail. First consider the following figure that
summarizes the all phases of a java program.

Phase 1

Phase 3

Phase 4

Phase 5

Editor

Compiler

Class Loader

Disk

Bytecode Verifier

Interpreter

Disk

Disk

Primar
y

Primar
y
Memor

Program is created in the
editor and stored on disk.

Compiler creates
bytecodes and stores
them on disk.

Class loader puts
bytecodes in memory.

Bytecode verifier
confirms that all
bytecodes are valid and
do not violate Javaõs
security restrictions.

Interpreter reads
bytecodes and translates
them into a language that
the computer can
understand, possibly
storing data values as the
program executes.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 20

Phase 1: Edit

Phase 1 consists of editing a file. This is accomplished with an editor program. The programmer types a

java program using the editor like notepad, and make corrections if necessary.

When the programmer specifies that the file in the editor should be saved, the program is stored on a secondary

storage device such as a disk. Java program file name ends with a

.java extension.

On Windows platform, notepad is a simple and commonly used editor for the beginners. However java

integrated development environments (IDEs) such as NetBeans, Borland JBuilder, JCreator and IBMõs

Ecllipse have built-in editors that are smoothly integrated into the programming environment.

Phase 2: Compile

In Phase 2, the programmer gives the command javac to compile the program. The java compiler translates the

java program into bytecodes, which is the language understood by the java interpreter.

To compile a program called Welcome.java, type

javac Welcome.java

at the command window of your system. If the program compiles correctly, a file called Welcome.class is

produced. This is the file containing the bytecodes that will be interpreted during the execution phase.

Phase 3: Loading

In phase 3, the program must first be placed in memory before it can be executed. This is done by the class

loader, which takes the .class file (or files) containing the bytecodes and transfers it to memory. The .class file

can be loaded from a disk on your system or over a network (such as your local university or company network

or even the internet).

Applications (Programs) are loaded into memory and executed using the java interpreter

via the command java. When executing a Java application called Welcome, the command

Java Welcome

Invokes the interpreter for the Welcome application and causes the class loader to load information used in

the Welcome program.

© Copyright Virtual University of Pakistan 21

 Web Design & Development ς CS506 VU

Phase 4: Verify

Before the bytecodes in an application are executed by the java interpreter, they are verified by the bytecode verifier in

Phase 4. This ensures that the bytecodes for class that are loaded form the internet (referred to as downloaded classes)

are valid and that they do not violate Javaõs security restrictions.

Java enforces strong security because java programs arriving over the network should not be able to cause damage

to your files and your system (as computer viruses might).

Phase 5: Execute

Finally in phase 5, the computer, under the control of its CPU, interprets the program one bytecode at a time.

Thus performing the actions specified by the program.

Programs may not work on the first try. Each of the preceding phases can fail because of various errors. This

would cause the java program to print an error message. The programmer would return to the edit phase,

make the necessary corrections and proceed through the remaining phases again to determine id the corrections

work properly.

References:

JavaÊ How to Program 5th edition by Deitel & Deitel

Sun Java online tutorial: http://java.sun.com/docs/books/tutorial/java/index.html

http://java.sun.com/docs/books/tutorial/java/index.html

© Copyright Virtual University of Pakistan 22

 Web Design & Development ς CS506 VU

Installation and Environment Setting

Installation

Å Download the latest version j2se5.0 (java 2 standard edition) from http://java.sun.com

or get it from any other source like CD.

Note: j2se also called jdk (java development kit). You can also use the previous versions like jdk 1.4 or

1.3 etc. but it is recommended that you use either jdk1.4 or jdk5.0

Å Install j2se5.0 on your system

Note: For the rest of this handout, assume that j2se is installed in C:\ Program

Files\ Java\ jdk1.5.0

Environment Setting

Once you successfully installed the j2se, the next step is environment or path setting. You can

accomplish this in either of two ways.

Å Temporary Path Setting

Open the command prompt from Start Æ Programs Æ Accessories Æ Comman

Prompt. The command prompt screen would be opened in front of you.

Write the command on the command prompt according to the following format

path = < java installation directory\ bin >

So, according to handout, the command will look like this

path = C:\ Program Files\ Java\ jdk1.5.0\ bin

To Test whether path has been set or not, write javac and press ENTER. If the list ofn b

options displayed as shown in the below figure means that you have successfully

completed the steps of path setting.

The above procedure is illustrates in the given below picture.

http://java.sun.com/

© Copyright Virtual University of Pakistan 23

 Web Design & Development ς CS506 VU

Note: The issue with the temporary path setting is you have to repeat the above explained procedure

again and again each time you open a new command prompt window. To avoid this overhead, it is better

to set your path permanently

Å Permanent Path Setting

In Windows NT (XP, 2000), you can set the permanent environment variable.

Right click on my computer icon click on properties as shown below

© Copyright Virtual University of Pakistan 24

 Web Design & Development ς CS506 VU

A System Properties frame would appeared as shown in the picture

Select the advanced tab followed by clicking the Environment Variable button. The

Environment variables frame would be displayed in front of you

Locate the Path variable in the System or user variables, if it is present there, select it by single

click. Press Edit button. The following dialog box would be appeared.

Å Write; C:\ Program Files\ Java\ jdk1.5.0\ bin at the end of the value field. Press OK button.

Remember to write semicolon (;) before writing the path for java installation directory as illustrate in

the above figure

Å If Path variable does not exist, click the New button. Write variable name

òPATHó, variable value C:\ Program Files\ Java\ jdk1.5.0\ bin and press OK button.

© Copyright Virtual University of Pakistan 25

 Web Design & Development ς CS506 VU

Å Now open the command prompt and write javac, press enter button. You see the list of options

would be displayed.

Å After setting the path permanently, you have no need to set the path for each new opened

command prompt.

References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair Javed. This material is

available just for the use of VU students of the course Web Design and Development and not for any other

commercial purpose without the consent of author.

© Copyright Virtual University of Pakistan 26

 Web Design & Development ς CS506 VU

First Program in Java

Like any other programming language, the java programming language is used to create applications. So, we

start from building a classical òHello Worldó application, which is generally used as the first program for

learning any new language.

HelloWorldApp

1. Open notepad editor from Start Æ ProgarmFiles Æ AccessoriesÆ Notepad.

2. Write the following code into it.

Note: Donõt copy paste the given below code. Probably it gives errors and you canõt able to remove them at the

beginning stage.

1. / * The HelloWorldApp class implements an application that
2. simply displays "Hello World!" to the standard output.
3. */

4. public class HelloWorldApp {
5. public static void main(String[] args) {

6. / / Display the string. No global main

7. System.out.println(òHello Worldó);
8. }
9. }

3. To save your program, move to File menu and choose save as option.

4. Save your program as òHelloWorldApp.javaó in some directory. Make sure to add double quotes around

class name while saving your program. For this example create a folder known as òexamplesó in D: drive

Note: Name of file must match the name of the public class in the file (at line 4). Moreover, it is case

sensitive. For example, if your class name is MyClass, than file name must be MyClass. Otherwise the

Java compiler will refuse to compile the program.

For the rest of this handout, we assume that program is saved in D:\ examples directory.

© Copyright Virtual University of Pakistan 27

 Web Design & Development ς CS506 VU

HelloWorldApp Described

Lines 1-3

Like in C++, You can add multiple line comments that are ignored by the compiler.

Lines 4

Line 4 declares the class name as HelloWorldApp. In java, every line of code must reside inside class. This is

also the name of our program (HelloWorldApp.java). The compiler creates the HelloWorldApp.class if this

program successfully gets compiled.

Lines 5

Line 5 is where the program execution starts. The java interpreter must find this defined exactly as

given or it will refuse to run the program. (However you can change the name of parameter that is

passed to main. i.e. you can write String[] argv or String[] some Param instead of String[] args)

Other programming languages, notably C++ also use the main() declaration as the starting point for

execution. However the main function in C++ is global and reside outside of all classes where as in Java

the main function must reside inside a class. In java there are no global variables or functions. The various

parts of this main function declaration will be covered at the end of this handout.

Lines 6

Again like C++, you can also add single line comment

Lines 7

Line 7 illustrates the method call. The println() method is used to print something on the console.

In this example println() method takes a string argument and writes it to the standard output i.e. console.

Lines 8-9

Line 8-9 of the program, the two braces, close the method main() and the class

HelloWorldApp respectively.

© Copyright Virtual University of Pakistan 28

 Web Design & Development ς CS506 VU

Compiling and Running H elloWorldApp

1. Open the command prompt from Start Æ Program Files Æ Accessories. OR

alternatively you can write cmd in the run command window.

2. Write cd.. to came out from any folder, and cd [folder name] to move inside the specified directory. To

move from one drive to another, use [Drive Letter]: See figure given below

3. After reaching to the folder or directory that contains your source code, in our case

HelloWorldApp.java.

4. Use òjavacó on the command line to compile the source file (ò.javaó file).

D:\ examples> javac HelloWorld.java

5. If program gets successfully compiled, it will create a new file in the same directory named

HelloWorldApp.class that contains the byte-code.

6. Use òjavaó on the command line to run the compiled .class file. Note ò.classó would be added with the file

name.

D:\ examples> java HelloWorld

7. You can see the Hello World would be printed on the console. Hurrah! You are successful in writing,

compiling and executing your first program in java ˂

Points to Remember

Å Recompile the class after making any changes

Å Save your program before compilation

Å Only run that class using java command that contains the main method, because program executions

always starts form main

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 2

An Idiom Explained

You will see the following line of code often:

ð public static void main(String args[]) { é}

Å About main()

òmainó is the function from which your program starts

Why public?

Since main method is called by the JVM that is why it is kept public so that it is

accessible from outside. Remember private methods are only accessible from within the

class

Why static?

Every Java program starts when the JRE (Java Run Time Environment) calls the

main method of that program. If main is not static then the JRE have to create an

object of the class in which main method is present and call the main method on that

object (In OOP based languages method are called using the name of object if they are

not static). It is made static so that the JRE can call it without creating an object.

Also to ensure that there is only one copy of the main method per class

Why void?

Å Indicates that main () does not return anything.

What is String args[] ?

Way of specifying input (often called command-line arguments) at startup of

application. More on it latter

References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair Javed. This material is

available just for the use of VU students of the course Web Design and Development and not for any other

commercial purpose with out the consent of author.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 3

Learning Basics

Lesson 3

Strings

A string is commonly considered to be a sequence of characters stored in memory and accessible as a unit.

Strings in java are represented as objects.

String Concatenation

ò+ó operator is used to concatenate strings

ð System.out.pritln(òHelloó + òWorldó) will print Hello World on console

String concatenated with any other data type such as int will also convert that datatype to String and

the result will be a concatenated String displayed on console. For example,

ð int i = 4;

ð int j = 5;

System.out.println (òHelloó + i)

will print Hello 4 on screen

ð However

System,.out..println(i+j) ;

will print 9 on the console because both i and j are of type int.

Comparing Strings

For comparing Strings never use == operator, use equals method of String class.

ð == operator compares addresses (shallow comparison) while equals compares values (deep

comparison)

E.g string1.equals(string2)

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 31

Example Code: String concatenation and comparison

public class StringTest {
public static void main(String[] args) {

int i = 4;
int j = 5;

System.out.println("Hello" + i); / / will print Hello4
System.out.println(i + j); / / will print 9

String s1 = new String (òpakistanó);
String s2 = òpakistanó;

if (s1 == s2) {
System.out.println(òcomparing string using == operatoró);

}

if (s1.equals(s2)) {
System.out.println(òcomparing string using equal methodó);

}
}
}

On execution of the above program, following output will produce

© Copyright Virtual University of Pakistan 32

 Web Design & Development ς CS506 VU

Taking in Command Line Arguments

In Java, the program can be written to accept command-line-arguments.

Example Code: command-line arguments

/ * This Java application illustrates the use of Java command-line arguments. */

public class CmdLineArgsApp {

public static void main(String[] args){ / / main method

System.out.println(óFirst argument ó + args[0]);
System.out.println(óSecond argument ó + args[1]);

}//en d main
}//En d class.

To execute this program, we pass two arguments as shown below:

public void someMethod() {

int x; //l ocal variable
System.out.println(x); / / compile time error

Å These parameters should be separated by space. .

Å The parameters that we pass from the command line are stored as Strings inside the òargsó array. You

can see that the type of òargsó array is String.

Example Code: Passing any number of arguments

In java, array knows their size by using the length property. By using, length property we can determine how

many arguments were passed. The following code example can accept any number of arguments

/ * This Java application illustrates the use of Java
command-line arguments. */

public class AnyArgsApp {

public static void main(String[] args){ / / main method

for(int i=0; i < args.length; i++)

System.out.println(òArgument:ó + i + òvalueó +args[i]);

}//en d main

}//En d class.

© Copyright Virtual University of Pakistan 33

 Web Design & Development ς CS506 VU

Output

C:\ java AnyArgsApp i can pass any number of arguments

Argument:0 value i Argument:1 value can
Argument:2 value pass Argument:3 value
any Argument:4 value number Argument:5
value of Argument:6 value arguments

© Copyright Virtual University of Pakistan 34

 Web Design & Development ς CS506 VU

Primitives vs Objects

Å Everything in Java is an òObjectó, as every class by default inherits from class

òObjectó , except a few primitive data types, which are there for efficiency reasons.

Å Primitive Data Types

Primitive Data types of java

boolean, byte 1 byte

char, short 2 bytes

int, float 4 bytes

long, double 8 bytes

Å Primitive data types are generally used for local variables, parameters and instance variables

(properties of an object)

Å Primitive datatypes are located on the stack and we can only access their value, while objects are

located on heap and we have a reference to these objects

Å Also primitive data types are always passed by value while objects are always passed by reference in

java. There is no C++ like methods

ð void someMethod(int &a, int & b) / / not available in java

Stack vs. Heap

Stack and heap are two important memory areas. Primitives are created on the stack while objects are

created on heap. This will be further clarified by looking at the following diagram that is taken from Java

Lab Course.

int num = 5;

Student s = new Student();

Stack Heap

num

5

0F59

name ali

0F59

© Copyright Virtual University of Pakistan 35

 Web Design & Development ς CS506 VU

Wrapper Classes

Each primitive data type has a corresponding object (wrapper class). These wrapper classes provides

additional functionality (conversion, size checking etc.), which a primitive data type cannot provide.

Wrapper Use

You can create an object of Wrapper class using a String or a primitive data type

Å Integer num = new Integer(4); or

Å Integer num = new Integer(ò4ó);

Note: num is an object over here not a primitive data type

You can get a primitive data type from a Wrapper using the corresponding value function

Å int primNum = num.intValue();

Converting Strings to Numeric Primitive Data Types

To convert a string containing digits to a primitive data type, wrapper classes can help. parseXxx method can

be used to convert a String to the corresponding primitive data type.

String value = ò532ó;

int d = Integer.parseInt(value);

String value = ò3.14e6ó;

double d = Double.parseDouble(value);

© Copyright Virtual University of Pakistan 36

 Web Design & Development ς CS506 VU

The following table summarizes the parser methods available to a java programmer.

Data Type Convert String using either é

byte Byte.parseByte(string)

new Byte(string).byteValue()

short Short.parseShort(string)

new Short(string).shortValue()

int Integer.parseInteger(string)

new Integer(string).intValue()

long Long.parseLong(string)

new Long(string).longValue()

float Float.parseFloat(string)

new Float(string).floatValue()

double Double.parseDouble(string)

new Double(string).doubleValue()

© Copyright Virtual University of Pakistan 37

 Web Design & Development ς CS506 VU

Example Code: Taking Input / Output

So far, we learned how to print something on console. Now the time has come to learn how to print on the

GUI. Taking input from console is not as straightforward as in C++. Initially weõll study how to take input

through GUI (by using JOPtionPane class).

The following program will take input (a number) through GUI and prints its square on the console as well on

GUI.

1. import javax.swing.*;

2. public class InputOutputTest {

3. public static void main(String[] args) {

4. / / takes input through GUI
5. String input = JOptionPane.showInputDialog("Enter number");

6. int number = Integer.parseInt(input);
7. int square = number * number;

8. / / Display square on console
9. System.out.println("square:" + square);

10. //Di splay square on GUI
11. JOptionPane.showMessageDialog(null, "square:"+ square);

12. System.exit(0);

13. }
14. }

On line 1, swing package was imported because it contains the JOptionPane class that will be used for taking

input from GUI and displaying output to GUI. It is similar to header classes of C++.

On line 5, showInputDialog method is called of JOptionPane class by passing string argument that will be

displayed on GUI (dialog box). This method always returns back a String regardless of whatever you entered (int,

float, double, char) in the input filed.

Our task is to print square of a number on console, so we first convert a string into a number by calling

parseInt method of Integer wrapper class. This is what we done on line number 6.

Line 11 will display square on GUI (dialog box) by using showMessageDialog method of JOptionPane class. The

first argument passed to this method is null and the second argument must be a String. Here we use string

concatenation.

Line 12 is needed to return the control back to command prompt whenever we use

JoptionPane class.

© Copyright Virtual University of Pakistan 38

 Web Design & Development ς CS506 VU

Compile & Execute

© Copyright Virtual University of Pakistan 39

 Web Design & Development ς CS506 VU

Selection & Control Structure

The if-else and switch selection structures are exactly similar to we have in C++. All relational operators that

we use in C++ to perform comparisons are also available in java with same behavior. Likewise for, while and do-

while control structures are alike to C++.

Reference:

1- Java tutorial: http:/ /www .dickbaldwin.com/java

2- Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent of author.

http://www.dickbaldwin.com/java

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 40

Object Oriented Programming

Lesson 4

Java is fundamentally object oriented. Every line of code you write in java must be inside a class (not counting

import directives). OOP fundamental stones Encapsulation, Inheritance and Polymorphism etc. are all fully

supported by java.

OOP Vocabulary Review

Å Classes

ð Definition or a blueprint of a user-defined datatype

ð Prototypes for objects

ð Think of it as a map of the building on a paper

Å Objects

ð Nouns, things in the world

ð Anything we can put a thumb on

ð Objects are instantiated or created from class

Å Constructor

ð A special method that is implicitly invoked. Used to create an Object (that is, an Instance of the

Class) and to initialize it.

Å Attribut es

ð Properties an object has.

Å Methods

ð Actions that an object can do

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 41

Defining a Class

class Point {

private int xCord;

private int yCord;

public Point (éé) {éé}

public void display (éé)

{

ééé.

}

} / / end of class

inastance variables and symbolic constants

constructor ð how to create and initialize
objects

methods ð how to manipulate those objects
(may or may not include its own òdriveró,
i.e., main())

Comparison with C++

Some important points to consider when defining a class in java as you probably noticed from the above given

skeleton are

ð There are no global variables or functions. Everything resides inside a class. Remember we wrote

our main method inside a class. (For example, in HelloWorldApp program)

ð Specify access modifiers (public, private or protected) for each member method or data members at

every line.

ð public: accessible anywhere by anyone

ð private: Only accessible within this class

ð protect: accessible only to the class itself and to itõs subclasses or other classes in the same

package.

ð default: default access if no access modifier is provided. Accessible to all classes in the same

package.

ð There is no semicolon (;) at the end of class.

ð All methods (functions) are written inline. There are no separate header and implementation files.

ð Automatic initialization of class level data members if you do not initialize them

Primitives

o Numeric (int, float etc) with zero

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 42

o Char with null

o Boolean with false

Object References

ð With null

Note: Remember, the same rule is not applied to local variables (defined inside method body). Using a

local variable without initialization is a compile time error

Public void someMethod() {

int x; //l ocal variable
System.out.println(x); / / compile time error

}

ð Constructor

ð Same name as class name

ð Does not have a return type

ð No initialization list

ð JVM provides a zero argument (default) constructor only if a class doesnõt define itõs own

constructor

ð Destructors

ð Are not required in java class because memory management is the responsibility of JVM.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 43

Task ð Defining a Student class

The following example will illustrate how to write a class. We want to write a

òStudentó class that

ð should be able to store the following characteristics of student

ð Roll No

ð Name

ð Provide default, parameterized and copy constructors

ð Provide standard getters/ setters (discuss shortly) for instance variables

ð Make sure, roll no has never assigned a negative value i.e. ensuring the correct state of the

object

ð Provide print method capable of printing student object on console

Getters / Setters

The attributes of a class are generally taken as private or protected. So to access them outside of a class, a

convention is followed knows as getters & setters. These are generally public methods. The words set

and get are used prior to the name of an attribute. Another important purpose for writing getter &

setters to control the values assigned to an attribute.

Student Class Code

/ / File Student.java

public class Student {

private String name;
private int rollNo;

/ / Standard Setters
public void setName (String name) {

this.name = name;
}

/ / Note the masking of class level variable rollNo
public void setRollNo (int rollNo) {

if (rollNo > 0) {
this.rollNo = rollNo;

} else {
this.rollNo = 100;

}
}

/ / Standard Getters
public String getName () {

return name;
}

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 44

public int getRollNo () {
return rollNo;

}

/ / Default Constructor public Student() {
name = ònot setó;
rollNo = 100;

}

/ / parameterized Constructor for a new student
public Student(String name, int rollNo) {

setName(name); //cal l to setter of name
setRollNo(rollNo); //cal l to setter of rollNo

}

/ / Copy Constructor for a new student
public Student(Student s) {

name = s.name;
rollNo = s.rollNo;

}

/ / method used to display method on console

public void print () {
System.out.print("Student name: " +name);
System.out.println(", roll no: " +rollNo);

}
} / / end of class

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 45

Using a Class

Objects of a class are always created on heap using the ònewó operator followed by constructor

Å Student s = new Student (); / / no pointer operator ò*ó between Student and s

Å Only String constant is an exception

String greet = òHelloó ; // No new operator

Å However you can also use

String greet2 = new String(òHelloó);

Members of a class (member variables and methods also known as instance variables/methods) are

accessed using ò.ó operator. There is no òÆó operator in java

s.setName(òAlió);

sÆsetName(òAlió) is incorrect and will not compile in java

Note: Objects are always passed by reference and primitives are always passed by value in java.

Task - Using Student Class

Create objects of student class by calling default, parameterize and copy constructor

Call student class various methods on these objects

Student client code

/ / File Test.java

/ * This class create Student class objects and demonstrates
how to call various methods on objects

*/

public class Test{

public static void main (String args[]){

/ / Make two student obejcts
Student s1 = new Student("ali", 15);
Student s2 = new Student(); // call to default costructor

s1.print(); / / display ali and 15
s2.print(); / / display not set and 100

s2.setName("usman");
s2.setRollNo(20);

System.out.print("Student name:" + s2.getName());
System.out.println(" rollNo:" + s2.getRollNo());

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 46

System.out.println("calling copy constructor");
Student s3 = new Student(s2); //c all to copy constructor

s2.print();
s3.print();

s3.setRollNo(-10); / / Roll No of s3 would be set to 100

s3.print();

/*NOTE : public vs. private
A statement like "b.rollNo = 10;" will not compile in a
client of the Student class when rollNo is declared
protected or private

*/

} //en d of main
} // end of class

Compile & Execute

Compile both classes using javac commad. Run Test class using java command.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 47

More on Classes

Static

A class can have static variables and methods. Static variables and methods are associated with the

class itself and are not tied to any particular object. Therefore statics can be accessed without instantiating an

object. Static methods and variables are generally accessed by class name.

The most important aspect of statics is that they occur as a single copy in the class regardless of the

number of objects. Statics are shared by all objects of a class. Non static methods and instance variables are not

accessible inside a static method because no this reference is available inside a static method.

We have already used some static variables and methods. Examples are

System.out.println(òsome textó); -- out is a static variable

JOptionPane.showMessageDialog(null, òsome textó); -- showMessageDialog is a static method

Garbage Collection & Finalize

Java performs garbage collection and eliminates the need to free objects explicitly. When an object has no

references to it anywhere except in other objects that are also unreferenced, its space can be reclaimed.

Before an object is destroyed, it might be necessary for the object to perform some action. For example:

to close an opened file. In such a case, define a finalize() method with the actions to be performed before the

object is destroyed.

finalize

When a finalize method is defined in a class, Java run time calls finalize() whenever it is about to recycle an

object of that class. It is noteworthy that a garbage collector reclaims objects in any order or never reclaims

them. We cannot predict and assure when garbage collector will get back the memory of unreferenced objects.

The garbage collector can be requested to run by calling System.gc() method. It is not necessary that it accepts the

request and run.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 48

Example Code: using static & finalize ()

We want to count exact number of objects in memory of a Student class the one defined earlier. For this

purpose, weõll modify Student class.

Add a static variable countStudents that helps in maintaining the count of student objects.

Write a getter for this static variable. (Remember, the getter also must be static one. Hoping so, you

know the grounds).

In all constructors, write a code that will increment the countStudents by one.

Override finalize() method and decrement the countStudents variable by one.

Override toString() method.

Class Object is a superclass (base or parent) class of all the classes in java by default. This class has already

finalize() and toString() method (used to convert an object state into string). Therefore we are actually

overriding these methods over here. (Weõll talk more about these in the handout on inheritance).

By making all above modifications, student class will look like

/ / File Student.java

public class Student {

private String name;
private int rollNo;
private static int countStudents = 0;

/ / Standard Setters
public void setName (String name) {

this.name = name;
}

/ / Note the masking of class level variable rollNo
public void setRollNo (int rollNo) {

if (rollNo > 0) {
this.rollNo = rollNo;

} else {
this.rollNo = 100;

}
}
/ / Standard Getters
public String getName () {

return name;
}
public int getRollNo () {

return rollNo;
}

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 49

/ / gettter of static countStudents variable
public static int getCountStudents(){

return countStudents;
}

/ / Default Constructor public Student() {

name = ònot setó;
rollNo = 100;

countStudents += 1;
}

/ / parameterized Constructor for a new student
public Student(String name, int rollNo) {

setName(name); //cal l to setter of name
setRollNo(rollNo); //cal l to setter of rollNo

countStudents += 1;
}

/ / Copy Constructor for a new student
public Student(Student s) {

name = s.name;
rollNo = s.rollNo;

countStudents += 1;
}

/ / method used to display method on console

public void print () {
System.out.print("Student name: " +name);
System.out.println(", roll no: " +rollNo);

}

/ / overriding toString method of java.lang.Object class
public String toString(){

return òname: ó + name + ò RollNo: ó + rollNo;
}

/ / overriding finalize method of Object class
public void finalize(){

countStudents -= 1;
}

} / / end of class

Next, weõll write driver class. After creating two objects of student class, we deliberately loose objectõs reference

and requests the JVM to run garbage collector to reclaim the memory. By printing countStudents value, we

can confirm that. Coming up code is of the Test class.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 50

/ / File Test.java

public class Test{

public static void main (String args[]){

int numObjects;

/ / printing current number of objects i.e 0
numObjs = Student.getCountStudents();
System.out.println(òStudents Objectsó + numObjects);

/ / Creating first student object & printing its values
Student s1 = new Student("ali", 15);
System.out.println(òStudent: ó + s1.toString());

/ / printing current number of objects i.e. 1
numObjs = Student.getCountStudents();
System.out.println(òStudents Objectsó + numObjects);

/ / Creating second student object & printing its values
Student s2 = new Student("usman", 49);

/ / implicit call to toString() method
System.out.println(òStudent: ó + s2);

/ / printing current number of objects i.e. 2
numObjs = Student.getCountStudents();
System.out.println(òStudents Objectsó + numObjects);

/ / loosing object reference
s1 = null

/ / requesting JVM to run Garbage collector but there is
/ / no guarantee that it will run
System.gc();

/ / printing current number of objects i.e. unpredictable
numObjs = Student.getCountStudents();
System.out.println(òStudents Objectsó + numObjects);

} //en d of main

} // end of class

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 51

The compilation and execution of the above program is given below. Note that output may be different

one given here because it all depends whether garbage collector reclaims the memory or not. Luckily, in my

case it does.

Reference:

Sun java tutorial: http://j ava.sun.com/docs/books/ tutorial/ java

Thinking in java by Bruce Eckle

Beginning Java2 by Ivor Hortan

Example code, their explanations and corresponding execution figures for this handout are taken

from the book JAVA A Lab Course by Umair Javed. This material is available just for the use of VU

students of the course Web Design and Development and not for any other commercial purpose

without the consent of author.

http://java.sun.com/docs/books/tutorial/java

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 52

Inheritance

Lesson 5

In general, inheritance is used to implement a òis-aó relationship. Inheritance saves code rewriting for a client

thus promotes reusability.

In java parent or base class is referred as super class while child or derived class is known as sub class.

Comparison with C++

Å Java only supports single inheritance. As a result a class can only inherit from one class at one time.

Å Keyword extends is used instead of ò:ó for inheritance.

Å All functions are virtual by default

Å All java classes inherit from Object class (more on it later).

Å To explicitly call the super class constructor, use super keyword. Itõs important to remember that call to

super class constructor must be first line.

Å Keyword super is also used to call overridden methods.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 53

Example Code: using inheritance

Weõll use three classes to get familiar you with inheritance. First one is Employee class. This will act as super

class. Teacher class will inherit from Employee class and Test class is driver class that contains main method. Letõs

look at them one by one

class Employee{

protected int id;
protected String name;

//parameterized constructor
public Employee(int id, String name){

this.id = id;
this.name = name;

}
//defaul t constructor
public Employee(){

/ / calling parameterized constructor of same (Employee)
/ / class by using keyword this

this (10, ònot setó);
}
//setters
public void setId (int id) {

this.id = id;
}
public void setName (String name) {

this.name = name;
}
//getters
public int getId () {

return id;
}

public String getName () {

return name;
}
/ / displaying employee object on console
public void display(){

System.out.println(òin employee display methodó);

System.out.println("Employee id:" + id + " name:" + name);
}

//overriding objectõs class toString method
public String toString() {

System.out.println(òin employee toString methodó);

return "id:" + id + "name:" + name;
}

}//en d class

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 54

The Teacher class extends from Employee class. Therefore Teacher class is a subclass of

Employee. The teacher class has an additional attribute i.e. qualification.

class Teacher extends Employee{

private String qual;

//defaul t constructor
public Teacher () {

//implici t call to superclass default construct
qual = "";

}

//parameterized constructor
public Teacher(int i, String n, String q){

/ / call to superclass param const must be first line
super(i,n);

qual = q;

}

//setter
public void setQual (String qual){

this.qual = qual;
}
//getter
public String getQual(){

return qual;
}

//overriding display method of Employee class
public void display(){

System.out.println("in teacher's display method");

super.display(); //cal l to superclass display method

System.out.println("Teacher qualification:" + qual);
}

// overriding toString method of Employee class
public String toString() {

System.out.println("in teacher's toString method");

String emp = super.toString();

return emp +" qualification:" + qual;
}

}//en d class

© Copyright Virtual University of Pakistan 55

 Web Design & Development ς CS506 VU

Objects of Employee & Teacher class are created inside main method in Test class. Later calls are made to display

and toString method using these objects.

class Test{

public static void main (String args[]){

System.out.println("making object of employee");
Employee e = new Employee(89, "khurram ahmad");

System.out.println("making object of teacher");
Teacher t = new Teacher (91, "ali raza", "phd");

e.display(); //cal l to Employee class display method
t.display(); //cal l to Teacher class display method

/ / calling employee class toString method explicitly
System.out.println("Employee: " +e.toString());

/ / calling teacher class toString implicitly
System.out.println("T eacher: " + t);

} //en d of main

}//en d class

Output

© Copyright Virtual University of Pakistan 56

 Web Design & Development ς CS506 VU

Object ð The Root Class

The Od Java classes. For user defined classes, its not necessary to mention the Object class as a super class,

java doesbject class in Java is a superclass for all other classes defined in Java's class libraries, as well as

for user-define it automatically for you.

The class Hierarchy of Employee class is shown below. Object is the super class of Employee class and

Teacher is a subclass of Employee class. We can make another class Manager that can also extends from

Employee class.

Object

Employe

Teacher Manager

© Copyright Virtual University of Pakistan 57

 Web Design & Development ς CS506 VU

Polymorphism

òPolymorphicó literally means òof multiple shapesó and in the context of OOP, polymorphic means

òhaving multiple behavioró.

A parent class reference can point to the subclass objects because of is-a relationship. For example a

Employee reference can point to:

o Employee Object

o Teacher Object

o Manager Object

A polymorphic method results in different actions depending on the object being referenced

o Also known as late binding or run-time binding

Example Code: using polymorphism

This Test class is the modification of last example code. Same Employee & Teacher classes are used.

Objects of Employee & Teacher class are created inside main methods and calls are made to display and

toString method using these objects.

class Test{

public static void main (String args[]){

/ / Make employee references
Employee ref1, ref2;

/ / assign employee object to first employee reference
ref1 = new Employee(89, "khurram ahmad");

/ / is-a relationship, polymorphism
ref2 = new Teacher (91, "al i raza" , "p hd");

//cal l to Employee class display method
ref1.display();

//cal l to Teacher class display method
ref2.display();

/ / call to Employee class toString method
System.out.println("Employee: " +ref1.toString());
/ / call to Teacher class toString method
System.out.println("Teacher: " + ref2.toString());

} //en d of main

}//en d class

© Copyright Virtual University of Pakistan 58

 Web Design & Development ς CS506 VU

Output

© Copyright Virtual University of Pakistan 59

 Web Design & Development ς CS506 VU

Type Casting

In computer science, type conversion or typecasting refers to changing an entity of one datatype into another.

Type casting can be categorized into two types

1. Up-casting

Converting a smaller data type into bigger one

Implicit ð we donõt have to do something special

No loss of information

Examples of

ñ Primitives

int a = 10;

double b = a;

ñ Classes

Employee e = new Teacher();

2. Down-casting

Converting a bigger data type into smaller one

Explicit ð need to mention

Possible loss of information

Examples of

ñ Primitives

double a = 7.65;

int b = (int) a;

ñ Classes

Employee e = new Teacher(); / / up-casting

Teacher t = (Teacher) e; / / down-casting

References:

Java tutorial: http://java.sun.com/docs/books/tutorial/java/javaOO/

Stanford University

Example code, their explanations and corresponding figures for handout 5-1,5-2 are taken from the

book JAVA A Lab Course by Umair Javed. This material is available just for the use of VU

students of the course Web Design and Development and not for any other commercial purpose

without the consent of author.

http://java.sun.com/docs/books/tutorial/java/javaOO/

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 60

Collections

Lesson 6

A collection represents group of objects know as its elements. Java has a built-in support for collections.

Collection classes are similar to STL in C++ . An advantage of a collection over an array is that you donõt need to

know the eventual size of the collection in order to add objects to it. The java.util package provides a set of

collection classes that helps a programmer in number of ways.

Collections Design

All classes almost provides same methods like get(), size(), isEmpty() etc. These methods will return the object

stored in it, number of objects stored and whether collection contains an object or not respectively.

Java collections are capable of storing any kind of objects. Collections store references to objects. This is similar to

using a void* in C. therefore down casting is required to get the actual type. For example, if string in stored in a

collection then to get it back, we write

String element = (String)arraylist.get(i);

Collection messages

Some basic messages (methods) are:

Constructor

ñ creates a collection with no elements

int size()

ñ returns the number of elements in a collection

boolean add(Object)

ñ adds a new element in the collection

ñ returns true if the element is added successfully false otherwise

boolean isEmpty()

ñ returns true if this collection contains no element false otherwise

boolean contains(Object)

ñ returns true if this collection contains the specified element by using iterative search

boolean remove(Object)

ñ removes a single instance of the specified element from this collection, if it is present

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 61

ArrayList

Itõs like a resizable array. ArrayList actually comes as a replacement the old òVectoró collection. As we add or
remove elements into or from it, it grows or shrinks over time.

Useful Methods

add (Object)

ñ With the help of this method, any object can be added into ArrayList because

Object is the super class of all classes.

ñ Objects going to add will implicitly up-cast.

Object get(int index)

ñ Returns the element at the specified position in the list

ñ index ranges from 0 to size()-1

ñ must cast to appropriate type

remove (int index)

ñ Removes the element at the specified position in this list.

ñ Shifts any subsequent elements to the left (subtracts one from their indices).

int size()

Example Code: Using ArrayList class

Weõll store Student objects in the ArrayList. We are using the same student class which we built in previous

lectures/handouts.

Weõll add three student objects and later prints all the student objects after retrieving them from ArrayList.

Letõs look at the code

iport java.util.*;

public class ArrayListTest {

public static void main(String[] args) {

/ / creating arrayList object by calling constructor
ArrayList al= new ArrayList();

/ / creating three Student objects

Student s1 = new Student (òalió , 1);
Student s2 = new Student (òsaadó , 2);
Student s3 = new Student (òrazaó , 3);

/ / adding elements (Student objects) into arralylist al.add(s1);
al.add(s2);
al.add(s3);

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 62

/ / checking whether arraylist is empty or not boolean b = al.isEmpty ();

if (b = = true) {

System.out.println(òarraylist is emptyó);

} else {

int size = al.size();
System.out.println(òarraylist size: ó + size);

}

/ / using loop to iterate. Loops starts from 0 to one
/ / less than size

for (int i=0; i<al.size(); i++){

/ / retrieving object from arraylist
Student s = (Student) al.get(i);

/ / calling student class print method

s.print();

} / / end for loop

} / / end main
} / / end class

Output

H ashMap

Store elements in the form of key- value pair form. A key is associated with each object that is stored. This

allows fast retrieval of that object. Keys are unique.

Useful Methods

put(Object key, Object Value)

ñ Keys & Values are stored in the form of objects (implicit upcasting is performed).

ñ Associates the specified value with the specified key in this map.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 63

ñ If the map previously contained a mapping for this key, the old value is replaced.

Object get(Object key)

ñ Returns the value to which the specified key is mapped in this identity hash map, or null if the

map contains no mapping for this key.

ñ Must downcast to appropriate type when used

int size()

Example Code: using H ashMap class

In this example code, weõll store Student objects as values and their rollnos in the form of strings as keys. Same

Student class is used. The code is;

iport java.util.*;

public class HashMapTest {

public static void main(String[] args) {

// creating HashMap object
HashMap h= new HashMap();

// creating Student objects

Student s1 = new Student (òalió , 1); Student s2 = new Student (òsaadó ,
2); Student s3 = new Student (òrazaó , 6);

// adding elements (Student objects) where roll nos

// are stored as keys and student objects as values

h.put(òoneó , s1);
h.put(òtwoó , s2);
h.put(òsixó, s3);

// checking whether hashmap is empty or not boolean b = h.isEmpty ();

if (b == true) {

System.out.println(òhashmap is emptyó);

} else {

int size = h.size();
System.out.println(òhashmap size: ó + size);

}

// retrieving student object against rollno two and

/ / performing downcasting
Student s = (Student)h.get(òtwoó);

// calling studentõs class print method s.print();

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 64

} // end main

} // end class

Output

References:

J2SE 5.0 new features: http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

Technical Article: http://java.sun.com/ developer/technicalArticles/releases/j2se15/

Beginning Java2 by Ivor Horton

Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course

Web Design and Development and not for any other commercial purpose without the consent of author.

http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html
http://java.sun.com/developer/technicalArticles/releases/j2se15/

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 65

Address Book

Warning: It is strongly advised that you type the code given in this example yourself. Do not copy/p aste it;

most probably you will get unexpected errors that you have never seen. Some bugs are deliberately

introduced as well to avoid copy- pasting. TAs will not cooperate with you in debugging such

errors˂ .

Problem

We want to build an address book that is capable of storing name, address & phone number of a person.

Address book provides functionality in the form of a JOptionPane based menu. The feature list includes

Å Add ð to add a new person record

Å Delete ð to delete an existing person record by name

Å Search ð to search a person record by name

Å Exit ð to exit from application

The Address book should also support persistence for person records

Approach for Solving Problem

Building a small address book generally involves 3 steps. Let us briefly discuss each step and write a solution code

for each step

Step1 ð Make PersonInfo class

First of all you need to store your desired information for each person. For this you can create a user-

defined data type (i.e. a class). Make a class PersonInfo with name, address and phone number as its

attributes.

Write a parameterized constructor for this class.

Write print method in Person class that displays one person record on a message dialog box.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 66

The code for PersonInfo class is given below.

import javax.swing.*;

class PersonInfo {

String name;
String address;
String phoneNum;

/ / parameterized constructor
public PersonInfo(String n, String a, String p) {

name = n;
address = a;
phoneNum = p;

}

/ / method for displaying person record on GUI
public void print() {

JOptionPane.showMessageDialog(null, òname: ó + name +
òaddress:ó +address + òphone no:ó + phoneNum);

}
}

Note: Not declaring attributes as private is a bad approach but we have done it to keep things simple here.

Step2 ð Make AddressBook class

Take the example of daily life; generally address book is used to store more than one person records and

we donõt know in advance how many records are going to be added into it.

So, we need some data structure that can help us in storing more than one

PersonInfo objects without concerning about its size.

ArrayList can be used to achieve the above functionality

Create a class Address Book with an ArrayList as its attribute. This arraylist will be used to store the

information of different persons in the form of PersonInfo Objects. This class will also provide

addPerson, deletePerson & searchPerson methods. These methods are used for adding new person records,

deleting an existing person record by name and searching among existing person records by name

respectively.

Input/Output will be performed through JOptionPane.

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 67

The code for AddressBook class is

import javax.swing.*;
import java.util.*;

class AddressBook {

ArrayList persons;

/ / constructor
public AddressBook () {

persons = new ArrayList();

}

/ / add new person record to arraylist after taking input
public void addPerson() {

String name =JOptionPane.showInputDialog(òEnter nameó);
String add = JOptionPane.showInputDialog(òEnter addressó);
String pNum = JOptionPane.showInputDialog(òEnter phone noó);

/ / construt new person object
PersonInfo p = new PersonInfo(name, add, pNum);

/ / add the above PersonInfo object to arraylist
persons.add(p);

}

// search person record by name by iterating over arraylist
public void searchPerson (String n) {

for (int i=0; i< persons.size(); i++) {

PersonInfo p = (PersonInfo)persons.get(i);

if (n.equals(p.name)) {

p.print();
}

} / / end for

} / / end searchPerson

//delete person record by name by iterating over arraylist
public void deletePerson (String n) {

for (int i=0; i< persons.size(); i++) {

PersonInfo p = (PersonInfo)persons.get(i);

if (n.equals(p.name)) {

persons.remove(i);
}

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 68

}
}

} / / end class

The addperson method first takes input for name, address and phone number and than construct a PersonInfo

object by using the recently taken input values. Then the newly constructed object is added to the arraylist ð

persons.

The searchPerson & deletePerson methods are using the same methodology i.e. first they search the required record

by name and than prints his/her detail or delete the record permanently from the ArrayList.

Both the methods are taking string argument, by using this they can perform their search or delete operation.

We used for loop for iterating the whole ArrayList. By using the size method of ArrayList, we can control our

loop as ArrayList indexes range starts from 0 to one less than size.

Notice that, inside loop we retrieve each PersonInfo object by using down casting operation. After that we

compare each PersonInfo objectõs name by the one passed to these methods using equal method since Strings

are always being compared using equal method.

Inside if block of searchPerson, print method is called using PersonInfo object that will display person information

on GUI. On the other hand, inside if block of deletePerson method, remove method of ArrayList class is

called that is used to delete record from persons i.e. ArrayList.

Step3 ð Make Test class (driver program)

This class will contain a main method and an object of AddressBook class.

Build GUI based menu by using switch selection structure

Call appropriate methods of AddressBook class

The code for Test class is

import javax.swing.*;
class Test {

Public static void main (String args[]) {

AddressBook ab = new AddressBook();

String input, s;
int ch;

while (true) {

input = JOptionPane.showInputDialog(òEnter 1 to add ó +

ò\ n Enter 2 to Search \ n Enter 3 to Deleteò +
ò\ n Enter 4 to Exitó);

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 69

ch = Integer.parseInt(input);

switch (ch) {

case 1:
ab.addPerson();
break;

case 2:

s = JOptionPane.showInputDialog(
òEnter name to search ó);

ab.searchPerson(s);
break;

case 3:
s = JOptionPane.showInputDialog(

òEnter name to delete ó);
ab.deletePerson(s);
break;

case 4:
System.exit(0);

}
}/ / end while

}/ / end main
}

Note that we use infinite while loop that would never end or stop given that our program should only exit when

user enters 4 i.e. exit option.

Compile & Execute

Compile all three classes and run Test class. Bravo, you successfully completed the all basic three steps. Enjoy!

˂.

Reference

Entire content for this handout are taken from the book JAVA A Lab Course by Umair Javed. This material is

available just for the use of VU students of the course Web Design and Development and not for any other

commercial purpose.

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 70

Intr o to Exceptions

Lesson 7

Types of Errors

Generally, you can come across three types of errors while developing software. These are Syntax, Logic &

Runtime errors.

1. Syntax Errors

Arise because the rules of the language are not followed.

2. Logic Errors

Indicates that logic used for coding doesnõt produce expected output.

3. Runtime Errors

Occur because the program tries to perform an operation that is impossible to complete.

Cause exceptions and may be handled at runtime (while you are running the program)

For example divide by zero

What is an Exception?

An exception is an event that usually signals an erroneous situation at run time

Exceptions are wrapped up as objects

A program can deal with an exception in one of three ways:

o ignore it

o handle it where it occurs

o handle it an another place in the program

Why handle Exceptions?

Helps to separate error handling code from main logic (the normal code you write) of the program.

As different sort/ type of exceptions can arise, by handling exceptions we can distinguish between

them and write appropriate handling code for each type for example we can differently handle

exceptions that occur due to division by Zero and exceptions that occur due to non-availability of a file.

If not handled properly, program might terminate.

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 71

Exceptions in Java

An exception in java is represented as an object thatõs created when an abnormal situation arises in

the program. Note that an error is also represented as an object in Java, but usually represents an

unrecoverable situation and should not be caught

The exception object stores information about the nature of the problem. For example, due to

network problem or class not found etc.

All exceptions in java are inherited from a class know as Throwable.

Exception Hi erarchy

Following diagram is an abridged version of Exception class hierarchy

Copyright Virtual University of Pakistan 72

 Web Design & Development ς CS506 VU

Types of Exceptions

Exceptions can be broadly categorized into two types, Unchecked & Checked Exceptions.

Unchecked Exceptions

Å Subclasses of RuntimeException and Error.

Å Does not require explicit handling
Å Run-time errors are internal to your program, so you can get rid of them by debugging your code

Å For example, null pointer exception; index out of bounds exception; division by zero exception; ...

Checked Exceptions

Å Must be caught or declared in a throws clause
Å Compile will issue an error if not handled appropriately
Å Subclasses of Exception other than subclasses of RuntimeException.

Å Other arrive from external factors, and cannot be solved by debugging
Å Communication from an external resource ð e.g. a file server or database

How Java handles Exceptions

Java handles exceptions via 5 keywords. try, catch, finally, throw & throws.

Å try block

Å Write code inside this block which could generate errors

Å catch block

Å Code inside this block is used for exception handling

Å When the exception is raised from try block, only than catch block would execute.

Å finally block

Å This block always executes whether exception occurs or not.

Å Write clean up code here, like resources (connection with file or database) that are opened may

need to be closed.

Copyright Virtual University of Pakistan 73

 Web Design & Development ς CS506 VU

The basic structure of using try ð catch ð finally block is shown in the picture below:

try //tr y block

{
// write code that could generate exceptions

} catch (<exception to be caught>) //cat ch block
{

}
éé
.......

/ / write code for exception handling

catch (<exception to be caught>) //catc h block

{
//code for exception handling

} finally / / finally block
{

// any clean-up code, release the acquired resources
}

Copyright Virtual University of Pakistan 74

 Web Design & Development ς CS506 VU

Å throw

Å To manually throw an exception, keyword throw is used.

Note: we are not covering throw clause in this handout

Å throws

Å If method is not interested in handling the exception than it can throw back the exception to the

caller method using throws keyword.

Å Any exception that is thrown out of a method must be specified as such by a

throws clause.

References:

Å Java tutorial by Sun: http:/ / java.sun.com/ docs/books/turorial

Å Beginning Java2 by Ivor Hortan

Å Thinking in Java by Bruce Eckle

Å CS193j Stanford University

http://java.sun.com/docs/books/turorial

Copyright Virtual University of Pakistan 75

 Web Design & Development ς CS506 VU

Code Examples of Exception Handling

Unchecked Exceptions

Example Code: UcException.java

The following program takes one command line argument and prints it on the console

/ / File UcException.java

public class UcException {

public static void main (String args[]) {

System.out.println(args[0]);

}

}

Compile & Execute

If we compile & execute the above program without passing any command line argument, an

ArrayIndexOutOfBoundsException would be thrown. This is shown in the following picture

Why?

Since we have passed no argument, therefore the size of String args[] is zero, and we have tried to access the first

element (first element has index zero) of this array.

From the output window, you can find out, which code line causes the exception to be raised. In the above

example, it is

System.out.println(args[0]);

Copyright Virtual University of Pakistan 76

 Web Design & Development ς CS506 VU

Modify UcException.java

Though it is not mandatory to handle unchecked exceptions we can still handle

Unchecked Exceptions if we want to. These modifications are shown in bold.

/ / File UcException.java

public class UcException {

public static void main (String args[]) {

try {

System.out.println(args[0]);

catch (IndexOutOfBoundsExceptoin ex) {

System.out.println(òYou forget to pass command line argumentó);

}

}

The possible exception that can be thrown is IndexOutOfBoundsException, so we handle it in the catch block.

When an exception occurs, such as IndexOutOfBoundsException in this case, then an object of type

IndexOutOfBoundesException is created and it is passed to the corresponding catch block (i.e. the

catch block which is capable of handling this exception). The catch block receives the exception object

inside a variable which is ex in this case. It can be any name; it is similar to the parameter declared in the

method signature. It receives the object of exception type (IndexOutOfBoundsExceptoin) it is declared.

Compile & Execute

If we execute the modified program by passing command line argument, the program would display on

console the provided argument. After that if we execute this program again without passing command line

argument, this time information message would be displayed which is written inside catch block.

Copyright Virtual University of Pakistan 77

 Web Design & Development ς CS506 VU

Checked Exceptions

Example Code: CException.java

The following program reads a line (hello world) from a file and prints it on the console. The File reading code is

probably new for you. Weõll explain it in the coming handouts

(Streams). For now, assumed that the code written inside the main read one line from a file and prints that to

console.

/ / File CException.java

import java.io.* ;

public class CException {

public static void main (String args[]) {

FileReader fr = new FileReader (òinput.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the line form file

String line = br.readLine();

System.out.println(line);

}

}

Compile & Execute

If you try to compile this program, the program will not compile successfully and displays the message

of unreported exception. This happens when there is code that can generate a checked exception but you

have not handled that exception. Remember checked exceptions are detected by compiler. As we early

discussed, without handling Checked exception, out program wonõt compile.

Copyright Virtual University of Pakistan 78

 Web Design & Development ς CS506 VU

Modify CException.java

As we have discussed earlier, it is mandatory to handle checked exceptions. In order to compile the code

above, we modify the above program so that file reading code is placed inside a try block. The expected

exception (IOException) that can be raised is caught in catch block.

/ / File CException.java

import java.io.* ;

public class CException {

public static void main (String args[]) {

try{

FileReader fr = new FileReader (òinput.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the line form file

String line = br.readLine();

System.out.println(line);

catch(IO Exceptoin ex) {

System.out.println(ex);

}

}

}

The code line written inside the catch block will print the exception name on the console if exception occurs

Compile & Execute

After making changes to your program, it would compile successfully. On executing this program, hello world

would be displayed on the console

Note: Before executing, make sure that a text file named input.txt must be placed in the same directory where

the program is saved. Also write hello world in that file before saving it.

Copyright Virtual University of Pakistan 79

 Web Design & Development ς CS506 VU

The finally block

The finally block always executes regardless of exception is raised or not while as you remembered the catch

block only executes when an exception is raised.

Exampel Code : FBlockDemo.java

/ / File FBlockDemo.java

import java.io.* ;

public class FBlockDemo {

public static void main (String args[]) {

try{

FileReader fr = new FileReader (òstrings.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the line form file

String line = br.readLine();

System.out.println(line);

catch(IOExceptoin ex) {

System.out.println(ex);

}

finally {

System.out.println(òfinally block always executeó);

}

}

}

Compile & Execute

The program above, will read one line from string.txt file. If string.tx is not present in the same directory the

FileNotFoundException would be raised and catch block would execute as well as the finally block.

If string.txt is present there, no such exception would be raised but still finally block executes. This is shown

in the following output diagram

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 80

Multiple catch blocks

Å Possible to have multiple catch clauses for a single try statement

ð Essentially checking for different types of exceptions that may happen

Å Evaluated in the order of the code

ð Bear in mind the Exception hierarchy when writing multiple catch clauses!

ð If you catch Exception first and then IOException, the IOException will never be caught!

Example code: MCatchDemo.java

The following program would read a number form a file numbers.txt and than prints its square on the console

/ / File MCatchDemo.java

import java.io.* ;

public class MCatchDemo {

public static void main (String args[]) {

try{

/ / can throw FileNotFound or IOException

FileReader fr = new FileReader (ònumbers.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the number form file

String s = br.readLine();

// may throws NumberFormatException, if s is not a no.

int number = Integer.parseInt(s);

System.out.println(number * number);

catch(NumberFormatExceptoin nfEx) {

System.out.println(nfEx);
}

catch(FileNotFoundExceptoin fnfEx) {

 Web Design & Development ς CS506 VU

Copyright Virtual University of Pakistan 81

System.out.println(fnfEx);

}

catch(IO Exceptoin ioEx) {

System.out.println(ioEx);

}

}

}

We read everything from a file (numbers, floating values or text) as a String. Thatõs why we first convert it to

number and than print its square on console.

Compile & Execute

If file numbers.txt is not present in the same directory, the FileNotFoundException

would be thrown during execution.

If numbers.txt present in the same directory and contains a number, than hopefully no exception would be

thrown.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 82

The throws clause

The following code examples will introduce you with writing & using throws clause.

Example Code: ThrowsDemo.java

The ThrowsDemo.java contains two methods namely method1 & method2 and one main method. The main

method will make call to method1 and than method1 will call method2. The method2 contains the file reading

code. The program looks like one given below

/ / File ThrowsDemo.java

import java.io.* ;

public class ThrowsDemo {

/ / contains file reading code

public static void method2() {

try{

FileReader fr = new FileReader (òstrings.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the line form file
String s = br.readLine();

System.out.println(s);

catch(IOExceptoin ioEx) {

ioEx.printStackTrace();

}

}/ / end method 2

//on ly calling method2
public static void method1() {

method2();

}

public static void main (String args[]) {

ThrowsDemo.method1();

}

}

© Copyright Virtual University of Pakistan 83

 Web Design & Development ς CS506 VU

printStackTrace method

Defined in the Throwable class ð superclass of Exception & Error classes

Shows you the full method calling history with line numbers.

Extremely useful in debugging

Modify: ThrowsDemo.java

Let method2 doesnõt want to handle exception by itself, so it throws the exception to the caller of method2

i.e. method1

So method1 either have to handle the incoming exception or it can re-throw it to its caller i.e. main.

Let method1 is handling the exception, so method1& method2 would be modified as:

/ / File ThrowsDemo.java

import java.io.* ;

public class ThrowsDemo {

/ / contains file reading code

public static void method2() throws IOEception{

FileReader fr = new FileReader (òstrings.txtó);

BufferedReader br = new BufferedReader (fr);

/ / read the line form file
String s = br.readLine();

System.out.println(s);

}/ / end method 2

/ / calling method2 & handling incoming exception
public static void method1() {
try {

method2();

catch (IOException ioEx) {

ioEx.printStackTrace();

}

}

public static void main (String args[]) {

ThrowsDemo.method1();

}
}

© Copyright Virtual University of Pakistan 84

 Web Design & Development ς CS506 VU

Compile & Execute

If file strings.txt is not present in the same directory, method2 will throw an exception that would be caught by

method1 and the printStackTrace method will print the full calling history on console. The above scenario is

shown in the output below:

If file strings.txt exist there, than hopefully line would be displayed on the console.

Reference

Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent of author.

© Copyright Virtual University of Pakistan 85

 Web Design & Development ς CS506 VU

Streams

Lesson 8

I/ O libraries often use the abstraction of a stream, which represents any data source or sink as an object

capable of producing or receiving pieces of data.

The Java library classes for I/O are divided by input and output. You need to import java.io package to use

streams. There is no need to learn all the streams just do it on the need basis.

The concept of " streams"

Å It is an abstraction of a data source/sink

Å We need abstraction because there are lots of different devices (files, consoles, network, memory,

etc.). We need to talk to the devices in different ways

(sequential, random access, by lines, etc.) Streams make the task easy by acting in the same way for

every device. Though inside handling of devices may be quite different, yet on the surface everything is

similar. You might read from a file, the keyboard, memory or network connection, different

devices may require specialization of the basic stream, but you can treat them all as just "streams".

When you read from a network, you do nothing different than when you read from a local file or

from user's typing

//Reading from console
BufferedReader stdin = new BufferedReader(new InputStreamReader(

-------- (your console)

// Reading from file
BufferedReader br=new BufferedReader(new FileReader(òinput.txtó));

// Reading from network
BufferedReader br = new BufferedReader(new InputStreamReader

(s.getInputStream()));
---- òsó is the socket

System.in));

Å So you can consider stream as a data path. Data can flow through this path in one direction between

specified terminal points (your program and file, console, socket etc.)

© Copyright Virtual University of Pakistan 86

 Web Design & Development ς CS506 VU

Stream classification based on Functionality

Based on functionality streams can be categorized as Node Stream and Filter Stream. Node Streams

are those which connect directly with the data source/ sick and provide basic functionality to read/write

data from that source/sink

FileReader fr = new FileReader(òinput.txtó);

You can see that FileReader is taking a data/source òinput.txtó as its argument and hence it is a node

stream.

FilterStreams sit on top of a node stream or chain with other filter stream and provide some additional

functionality e.g. compression, security etc. FilterStreams take other stream as their input.

BufferedReader bt = new BufferedReader(fr);

BufferedReader makes the IO efficient (enhances the functionality) by buffering the input before delivering.

And as you can see that BufferedReader is sitting on top of a node stream which is FileReader.

Stream classification based on data

© Copyright Virtual University of Pakistan 87

 Web Design & Development ς CS506 VU

Two type of classes exists.

Classes which contain the word stream in their name are byte oriented and are here since JDK1.0. These streams
can be used to read/write data in the form of bytes. Hence classes with the word stream in their name are byte-
oriented in nature. Examples of byte oriented streams are FileInputStream, ObjectOutputStream etc.

Classes which contain the word Reader/Writer are character oriented and read and write data in the form of
characters. Readers and Writers came with JDK1.1. Examples of Reader/Writers are FileReader, PrintWriter etc

© Copyright Virtual University of Pakistan 88

 Web Design & Development ς CS506 VU

Example Code 8.1: Reading from File

The ReadFileEx.java reads text file line by line and prints them on console. Before we move on to the code,

first create a text file (input.txt) using notepad and write following text lines inside it.

Text File: input.txt

Hello World

Pakistan is our homeland

Web Design and Development

/ / File ReadFileEx.java

import java.io.*;

public class ReadFileEx {

public static void main (String args[]) {

FileReader fr = null;
BufferedReader br = null;

try {

/ / attaching node stream with data source
fr = new FileReader(òinput.txtó);

/ / attatching filter stream over node stream
br = new BufferedReader(fr);

/ / reading first line from file
String line = br.readLine();

/ / printing and reading remaining lines
while (line != null){

System.out.println(line);

line = br.readLine();

}

/ / closing streams
br.close();
fr.close();

}catch(IOException ioex){

System.out.println(ioex);
}
} / / end main
} / / end class

© Copyright Virtual University of Pakistan 89

 Web Design & Development ς CS506 VU

Example Code 8.2: Writing to File

The WriteFileEx.java writes the strings into the text file named òoutput.txtó. If

òoutput.txtó file does not exist, the java will create it for you.
/ / File WriteFileEx.java

import java.io.*;

public class WriteFileEx {

public static void main (String args[]) {

FileWriter fw = null;
PrintWriter pw = null;

try {

/ / attaching node stream with data source
/ / if file does not exist, it automatically creates it
fw = new FileWriter (òoutput.txtó);

/ / attatching filter stream over node stream
pw = new PrintWriter(fw);

String s1 = òHello Worldó;
String s2 = òWeb Design and Developmentó;

/ / writing first string to file
pw.println(s1);

/ / writing second string to file
pw.println(s2);

/ / flushing stream
pw.flush();

/ / closing streams
pw.close();
fw.close();

}catch(IOException ioex){

System.out.println(ioex);
}
} / / end main
} / / end class

After executing the program, check the output.txt file. Two lines will be written there.

Reference

Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent of author.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 90

Modification of Address Book Code

Adding Persistence Functionality

Lesson 9

Hopefully, your address book you built previously is giving you the required results except one i.e.

persistence. You might have noticed that after adding some person records in the address book; if you exit form

the program next time on re-executing address book all the previous records are no more available.

To overcome the above problem, we will modify our program so that on exiting/ starting of address book, all

the previously added records are available each time. To achieve this, we have to provide the persistence

functionality. Currently, we will accomplish this task by saving person records in some text file.

Supporting simple persistence by any application requires handling of two scenarios. These are

On start up of application ð data (person records) must be read from file

On end/finish up of application ð data (person records) must be saved in file

To support persistence, we have to handle the above mentioned scenarios

Scenario 1 ð Start Up

Establish a data channel with a file by using streams

Start reading data (person records) from file line by line

Construct PersonInfo objects from each line you have read

Add those PersonInfo objects in arraylist persons.

Close the stream with the file

Perform these steps while application is loading up

We will read records from a text file named persons.txt. The person records will be present in the file in the

following format.

Ali,defence,9201211
Usman,gulberg,5173940
Salman,LUMS,5272670

persons.txt

As you have seen, each person record is on a separate line. Personõs name, address &

phone number is separated using comma (,).

We will modify our AddressBook.java by adding a new method loadPersons into it. This method will

provide the implementation of all the steps. The method is shown below:

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 91

public void loadPersons (){

String tokens[] = null;
String name, add, ph;

try {

FileReader fr = new FileReader("persons.txt");
BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line != null) {

tokens = line.split(",");

name = tokens[0];
add = tokens[1];
ph = tokens[2];

PersonInfo p = new PersonInfo(name, add, ph);
persons.add(p);

line = br.readLine();
}

br.close();
fr.close();

} catch(IOException ioEx){

System.out.println(ioEx);

}
}

First, we have to connect with the text file in order to read line by line person records from it. This task is

accomplished with the following lines of code

FileReader fr = new FileReader(òpersons.txtó); BufferedReader br = new

BufferedReader(fr);

FileReader is a character based (node) stream that helps us in reading data in the form of characters. As we

are using streams, so we have to import the java.io package in the AddressBook class.

We passed the file name persons.txt to the constructor of the FileReader.

Next we add BufferedReader (filter stream) on top of the FileReader because BufferedReader

facilitates reading data line by line. (As you can recall from the lecture that filter streams are attached on top

of node streams). Thatõs why the constructor of BufferedReader is receiving the fr ð the FileReader

object.

The next line of code will read line from file by using readLine() method of

BufferedReader and save it in a string variable called line.

String line = br.readLine();

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 92

After that while loop starts. The condition of while loop is used to check whether the file is reached to end

(returns null) or not. This loop is used to read whole file till the end. When end comes (null), this loop will

finish.

while (line != null)

Inside loop, the first step we performed is tokenizing the string. For this purpose, we have used split

method of String class. This method returns substrings (tokens) according to the regular expression or

delimiter passed to it.

tokens = line.split(ò,ó);

The return type of this method is array of strings thatõs why we have declared tokens as a String array in the

beginning of this method as

String tokens[];

For example, the line contains the following string

Ali,defence,9201211

Now by calling split(ò,ó) method on this string, this method will return back three substrings ali defence
and 9201211 because the delimiter we have passed to it is comma. The delimiter itself is not included in

the substrings or tokens.

The next three lines of code are simple assignments statements. The tokens[0] contains the name of the

person because the name is always in the beginning of the line, tokens[1] contains address of the person

and tokens[2] contains the phone number of the person.

name = tokens[0];

add = tokens[1];

ph = tokens[2];

The name, add and ph are of type String and are declared in the beginning of this method.

After that we have constructed the object of PersonInfo class by using parameterized constructor and

passed all these strings to it.

PersonInfo p = new PersonInfo(name, add, ph);

Afterward the PersonInfo objectõs p is added to the arraylist i.e. persons. persons.add(p);

The last step we have done inside loop is that we have again read a line form the file by using the readLine()

method.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 93

By summarizing the task of while loop we can conclude that it reads the line from a file,

Tokenize that line into three substrings followed by constructing the PersonInfo object by

using these tokens. And adding these objects to the arraylist. This process continues till the file

reaches its end.

The last step for reading information from the file is ordinary one ð closing the streams,

because files are external resources, so itõs better to close them as soon as possible.

Also observe that we used try/catch block because using streams can result in raising exceptions

that falls under the checked exceptions category ð that needs mandatory handling.

The last important step you have to perform is to call this method while loading up. The most

appropriate place to call this method is from inside the constructor of AddressBook.java. So

the constructor will now look like similar to the one given below:

éééééé

public AddressBook () {
Persons = new ArrayList();
loadPersons();

}
éééééé

AddressBook.java

Scenario 2 ð End/Finish Up

Establish a datachanel(stream) with a file by using streams

Take out PersonInfo objects from ArrayList (persons)

Build a string for each PersonInfo object by inserting commas (,) between name

& address and address & phone number.

Write the constructed string to the file

Close the connection with file

Perform these steps while exiting from address book.

Add another method savePersons into AddressBook.java. This method will provide the implementation of all

the above mentioned steps. The method is shown below:

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 94

Public void savePersons (){

try {

PersonInfo p;
String line;

FileWriter fw = new FileWriter("persons.txt");
PrintWriter pw = new PrintWriter(fw);

for(int i=0; i<persons.size(); i++)
{

p = (PersonInfo)persons.get(i);

line = p.name +","+ p.address +","+ p.phoneNum;

/ / writes line to file (persons.txt)
pw.println(line);

}

pw.flush();
pw.close();
fw.close();

}catch(IOException ioEx){

System.out.println(ioEx);
}

}

As you can see, that we have opened the same file (persons.txt) again by using a set of streams.

After that we have started for loop to iterate over arraylist as we did in

searchPerson and deletePerson methods.

Inside for loop body, we have taken out PersonInfo object and after type casting it we have assigned its reference

to a PersonInfo type local variable p. This is achieved by the help of following line of code

p = (PersonInfo)persons.get(i);

Next we build a string and insert commas between the PersonInfo attributes and assign the newly constructed

string to stringõs local variable line as shown in the following line of code.

line = p.name +","+ p.address +","+ p.phoneNum;

Note: Since, we havenõt declare PersonInfo attributes private, therefore we are able to directly access them

inside AddressBook.java.

The next step is to write the line representing one PersonInfo objectõs information, to the file. This

is done by using println method of PrintWriter as shown below

pw.println(line);

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 95

After writing line to the file, the println method will move the cursor/control to the next line. Thatõs why

each line is going to be written on separate line.

The last step for saving information to the file is ordinary one ð closing the streams but before that notice

the code line that you have not seen/p erformed while loading persons records from file. That is

pw.flush();

The above line immediately flushes data by writing any buffered output/data to file. This step is necessary

to perform or otherwise you will most probably lose some data for the reason that PrintWriter is a

Buffered Stream and they have their own internal memory/storage capacity for efficiency reasons.

Buffered Streams do not send the data until their memory is full.

Also we have written this code inside try-catch block.

The last important step you have to perform is to call this method before exiting from the address book.

The most appropriate place to call this method is under case 4

(exit scenario) in Test.java. So the case 4 will now look like similar to the one given below:

case 4:
ab.savePersons();
System.exit(0);

Test.java

Compile & Execute

Now again after compiling all the classes, run the Test class. Initially we are assuming that out persons.txt file is

empty, so our arraylist persons will be empty on the first start up of address book. Now add some records

into it, perform search or delete operations. Exit from the address book by choosing option 4.

Check out the persons.txt file. Donõt get surprised by seeing that it contains all the person records in the

format exactly we have seen above.

Next time you will run the address book; all the records will be available to you. Perform the search or delete

operation to verify that.

Finally You have done it !!!

References

Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent of author.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 96

Abstract Classes and Interfaces

Problem and Requirements

Before moving on to abstract classes, first examine the following class hierarchy shown below:

Circle Square

Å Suppose that in order to exploit polymorphism, we specify that 2-D objects must be able to compute their

area.

ð All 2-D classes must respond to area() message.

Å How do we ensure that?

ð Define area method in class Shape

ð Force the subclasses of Shape to respond area() message

Å Javaõs provides us two solutions to handle such problem

ð Abstract Classes

ð Interfaces

Abstract Classes

Abstract classes are used to define only part of an implementation. Because, information is not complete

therefore an abstract class cannot be instantiate. However, like regular classes, they can also contain instance

variables and methods that are full implemented. The class that inherits from abstract class is responsible to

provide details.

Any class with an abstract method (a method has no implementation similar to pure virtual function in

C++) must be declared abstract, yet you can declare a class abstract that has no abstract method.

If subclass overrides all abstract methods of the super class, than it becomes a concrete (a class whose object can

be instantiate) class otherwise we have to declare it as abstract or we can not compile it.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 97

The most important aspect of abstract class is that reference of an abstract class can point to the object of

concrete classes.

Code Example of Abstract Classes

The Shape class contains an abstract method calculateArea() with no definition.

public abstract class Shape{
public abstract void calculateArea();

}

Class Circle extends from abstract Shape class, therefore to become concrete class it must provides the

definition of calculateArea() method.

public class Circle extends Shape {

private int x, y;
private int radius;

public Circle() {
x = 5;
y = 5;
radius = 10;

}

/ / providing definition of abstract method
public void calculateArea () {

double area = 3.14 * (radius * radius);
System.out.println(òArea: ó + area);

}

}// end of class

The Test class contains main method. Inside main, a reference s of abstract Shape class is created. This reference

can point to Circle (subclass of abstract class Shape) class object as it is a concrete class. With the help of

reference, method calculateArea() can be invoked of Circle class. This is all shown in the form of code below

public class Test {

public static void main(String args[]){

//ca n only create references of A.C.
Shape s = null;

// Shape s1 = new Shape(); //cannot instantiate

//abstractclass reference can point to concrete subclass
s = new Circle();

s.calculateArea();

}

}// end of class

The compilation and execution of the above program is shown below:

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 98

Int erfaces

As we seen one possible javaõs solution to problem discussed in start of the tutorial. The second possible javaõs

solution is Interfaces.

Interfaces are special java type which contains only a set of method prototypes, but doest not provide the

implementation for these prototypes. All the methods inside an interface are abstract by default thus an

interface is tantamount to a pure abstract class ð a class with zero implementation. Interface can also contains

static final constants

Defining an Interface

Keyword interface is used instead of class as shown below:

public interface Speaker{

public void speak();

}

Implementing (using) Interface

Classes implement interfaces. Implementing an interface is like signing a contract. A class that implements an

interface will have to provide the definition of all the methods that are present inside an interface. If the

class does not provide definitions of all methods, the class would not compile. We have to declare it as an

abstract class in order to get it compiled.

Relationship between a class and interface is equivalent to òresponds toó while òis aó

relationship exists in inheritance.

Code Example of Defining & Implementing an Interface

The interface Printable contains print() method.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 99

public interface Printable{
public void print();

}

Class Student is implementing the interface Printable. Note the use of keyword implements after the class

name. Student class has to provide the definition of print method or we are unable to compile.

The code snippet of student class is given below:

public class Student implements Printable {

private String name;
private String address;

public String toString () {
return "name:"+name +" address:"+address;

}

//provi ding definition of interfaceõs print method
public void print() {

System.out.println(" Name:" +name+" address" +address);
}

}// end of class

Interface Characteristics

Similar to abstract class, interfaces imposes a design structure on any class that uses the interface. Contrary to

inheritance, a class can implement more than one interfaces. To do this separate the interface names with

comma. This is javaõs way of multiple inheritance.

class Circle implements Drawable , Printable { ééé. }

Objects of interfaces also cannot be instantiated.

Speaker s = new Speaker(); / / not compile

However, a reference of interface can be created to point any of its implementation class. This is interface based

polymorphism.

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 100

Code Example: Interface based polymorphism

Interface Speaker is implemented by three classes Politician, Coach and Lecturer. Code snippets of all these

three classes are show below:

public class Politici an implements Speaker{
public void speak(){

System.out.println(òPolitics Talksó);

}
}

public class Coach implements Speaker{
public void speak(){

System.out.println(òSports Talksó);

}
}

public class Lecturer implements Speaker{
public void speak(){

System.out.println(òWeb Design and Development Talksó);

}
}

As usual, Test class contains main method. Inside main, a reference sp is created of Speaker class. Later,

this reference is used to point to the objects of Politician, Coach and Lecturer class. On calling speak method

with the help of sp, will invoke the method of a class to which sp is pointing.

public class Test{
public static void main (String args[]) {

Speaker sp = null;

System.out.println("sp pointing to Politician");
sp = new Politician();
sp.speak();

System.out.println("sp pointing to Coach");
sp = new Coach();
sp.speak();

System.out.println("sp pointing to Lecturer");
sp = new Lecturer();
sp.speak();

}
}

 Web Design & Development ς CS506 VU

© Copyright Virtual University of Pakistan 101

The compilation and execution of the above program is shown below:

References

Example code, their explanations and corresponding figures for this handout are taken from the book JAVA

A Lab Course by Umair Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent of author.

