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D3.5 – Operating System with Real-Time Support and FPGA Interface

Executive Summary

This document constitutes deliverable 3.5 - Operating System with Real-Time Support and FPGA
Interface of work package 3 of the JUNIPER project. It consists of the integration of the FPGA
support inside the prototype implementation of the Linux kernel with real-time bandwidth reservation
scheduling support.

The purpose of this deliverable is to describe the implementation of the FPGA interface that provides
communication between the FPGA and the Java Virtual Machine through the Operating System with
Real-Time Support. In order to better understand the environment, a brief overview of the main
features of the Operating System with Real-Time Support are presented, together with a description
of the functionalities implemented in the first prototype.

Later, the FPGA support for the JUNIPER platform is presented: first, an overview of the FPGA
subsystem selected and its interaction with the other hardare components are described; then, the
architecture of the Linux device driver for the FPGA board is described, together with instruction to
compile it and to use it throught the Linux sysfs interface; finally, the mapping of the JFMI calls to
the device driver API is presented.

This document describes the implementation of the FPGA interface described in Deliverable 3.4 -
FPGA Integration Definition. It is developed to run inside the Operating System with Real-Time
Support, which is described in Deliverable 3.1 - Operating System Real-Time Support Definition. An
interim version has been implemented in Deliverable 3.2 - Prototype Operating System with Real-
Time Support and the final version will be submitted later in Deliverable 3.6 - Final Operating System
with Real-Time Support.
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1 Linux Kernel with Real-Time Enhancements

This deliverable presents the first version of the Operating System with Real-Time support and FPGA
Interface. It includes the real-time features provided within the prototype described in deliverable
D3.2 together with the kernel support for the interaction with the FPGA board as required in the
JUNIPER project. In particular, the real-time features included in this release are relative to the
reservation of single tasks and disk I/O.

The CPU reservation capabilities are provided at the task level by the SCHED_DEADLINE [2] kernel
scheduling policy; the extended to support CPU reservation for groups of tasks will be achieved in
deliverable D3.6 by implementing the Bounded Delay Multipartition (BDM) [3].

In order to provide reservation at disk level, the Linux kernel is enriched with the Budget Fair Queue-
ing (BFQ) [4] block scheduler that provides a fair allocation of I/O bandwidth; the amount of band-
width actually reserved depends on the number of requests and their relative priorities.

The last real-time improvement included in this release is the RT_PREEMPT patch [1], that
as been improved to work in conjunction with the reservation mechanism provided by the
SCHED_DEADLINE policy. This patch increases the Linux kernel determinism by replacing most
kernel spin-locks with mutexes that support Priority Inheritance (PI) and by moving interrupts and
software interrupts to kernel threads.

The traditional support for FPGA boards (hosted on a PCI card within the node) in the Linux kernel
only provides the communication with the FPGA through the PCIe bus. This is not enough to fruit-
fully exploit the FPGA capabilities from the JVM; for this reason a kernel module has been developed
to leverage the PCI support and expose to the virtual machine an API enabling the application pro-
cesses to manage accelerators, in terms of loading them, passing data to them, invoking them and
read back results.

Deliverable 3.2 - Prototype Operating System with Real-Time Support (Appendix A), presents the
procedure required to obtain a working copy of the Operating System prototype including the Linux
kernel version 3.14 enhanced with the patches previously described. In particular, Appendix A.2
shows how to install the prototype kernel on a Linux Debian distribution.
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2 FPGA Integration

2.1 System Overview

As shown in D 2.4, an accelerator is implemented as a piece of hardware which exposes two busses;
an AXI slave port which is used to control the core (e.g. the start signal, query the core’s status) and
an AXI master port which is used such that the core can request data from main memory. These cores
are then wrapped and instantiated within a VHDL wrapper, which simply forwards the signals out,
but also contains functionality to decouple the core’s outputs such that dynamic reconfiguration can
take place.

In addition to the accelerators and DDR, a small amount of fast block-RAM is created on the board.
This storage is for static information about the design, such as the number of accelerators present,
the address of each control port and other metadata about the current hardware design. This RAM is
also read/write, such that information about the current status of each accelerator can be stored and
persist through updates of the JFM module.

A number of these cores are then instantiated and connected to the DDR on the board via an AXI
bus. In addition, a PCI-Express core is instantiated and connected to the DDR, the control ports of
each accelerator, the small block-RAM and to the FPGA’s reconfiguration port, allowing for dynamic
reconfiguration. A block-diagram of this can be found in Figure 1.

PCI Express
Endpoint MS

Accelerator MS

Accelerator MS

Accelerator MS

Accelerator MS

Configuration
Block-RAMS

DDRS

FPGA
ReconfigurationS

Centralised
DMA MS

Figure 1: Block Diagram of the FPGA Implementation

The upshot of this configuration is that each block can be addressed as a memory-mapped peripheral,
which is then mapped into the PCI-Express address space. This then implies a purely logical con-
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figuration for the JFM module, simplifying the implementation of both the hardware and the kernel
driver.

2.2 Driver Architecture

The kernel driver is implemented as a loadable module for Linux versions 2.6.* and 3.*, and is
distributed along with this deliverable. The process for building this module is documented below:

t a r −xf j u n i p e r _ j f m . t a r . gz # E x t r a c t t h e d r i v e r s o u r c e
cd j u n i p e r _ j f m
make # B u i l d t h e module
sudo insmod j u n i p e r _ j f m . ko # And l o a d i t .

The kernel driver will then register itself for all devices with a vendor ID of 0x10EE and
a product ID of 0x7011, and register a new device class under sysfs for these devices,
/sys/class/juniper.

When a board matching this vendor/product pair is found, it will have a new virtual device created
for it which is used to manage the FPGA board itself (e.g. /sys/class/juniper/juniper0,
containing the following files:

• device: The standard Linux sysfs link pointing to the parent device. In this case, it will
point to the device node for the PCI endpoint.

• reconfig: A write-only binary attribute which is used to access the FPGA’s reconfiguration
port.

• power: A standard Linux sysfs folder used for device power management. This is currently
ignored.

• subsystem: A standard Linux sysfs link back to the device’s class, in this case,
/sys/class/juniper.

A better design would be to have a reconfig port in each accelerator which can reconfigure only the
logic occupied by that accelerator in order to prevent accidentally overwriting the wrong accelerator
tile. This is currently extremely difficult as a partial bitfile has no notion of which tile it is for, only
the actual changed logic, and the Xilinx bitstream format is undocumented. For this reason, the
reconfiguration port has been made global.

The device node also contains a set of sub-devices (e.g.
/sys/class/juniper/juniper0/juniper0a) which represent each accelerator. These
sub-devices are created using the information found in the configuration block-RAM mentioned in
Section 2.1. Note that this block-RAM is hidden from the user, and is only ever read or written to
directly by the JFM driver. These sub-devices contain the standard Linux sysfs files (i.e. device,
power and subsystem) as before, but with the following additional files:

• accel_hold: Read/write. Used to de-couple a reconfigurable module from the outside
world, to make it ready for reconfiguration. Writing a “0” or “1” can be used to control the
decoupling logic, and reading the file will yield whether the core is de-coupled or not.
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• accel_idle: Read-only. Yields “1” if the core is idle (i.e. doing no processing), or “0” if
not.

• accel_start: Write-only. Writing a “1” to this file will cause the accelerator to begin
execution.

• mem: Read/write. This file represents the memory partition used by the accelerator, and is
the data which the accelerator operates upon and writes out. Reads and writes to this device
node will cause the FPGA board to initiate DMA transfers, hence allowing for both fast and
asynchronous transfers.

An example session can be seen below. This shows starting the accelerator, waiting for a result, then
retrieving the results from the computation.
# Get t o t h e base d i r e c t o r y
cd / s y s / c l a s s / j u n i p e r / j u n i p e r 0 /
# Copy t h e d a t a t o be p r o c e s s e d t o a c c e l e r a t o r a
dd i f =~/ a c c e l _ d a t a o f = . / j u n i p e r 0 a /mem bs =4 c o u n t =64
# S t a r t i t !
echo " 1 " > . / j u n i p e r 0 a / a c c e l _ s t a r t
# Wait f o r t h e end
whi le [ [ . / j u n i p e r 0 a / a c c e l _ i d l e == " 0 " ] ] ;
# Get t h e d a t a back o u t
dd i f = . / j u n i p e r 0 a /mem ~ / a c c e l _ r e s u l t s bs =4 c o u n t =64

Another example session can be seen below. This shows performing reconfiguration of the core, then
starting the new design.
# Get t o t h e base d i r e c t o r y
cd / s y s / c l a s s / j u n i p e r / j u n i p e r 0
# De−c o u p l e t h e c o r e t o be r e p l a c e d
echo " 1 " > . / j u n i p e r 0 a / a c c e l _ h o l d
# R e c o n f i g u r e
c a t ~ / j u n i p e r _ n e w t i l e . b i n > . / r e c o n f i g
# R e l e a s e t h e ho ld
echo " 0 " > . / j u n i p e r 0 a / a c c e l _ h o l d
# And s t a r t i t !
echo " 1 " > . / j u n i p e r 0 a / a c c e l _ s t a r t

2.3 Relation to User-Land

This kernel module provides a simple interface to the devices contained within the FPGA, as outlined
in D 3.4, with a couple of key differences. Firstly, using sysfs attributes greatly simplifies the
implementation of the kernel module, compared with implementing all I/O calls (i.e. open(),
read(), write() and seek()) manually within the kernel driver, as required when using raw
device nodes. In addition, using sysfs allows for a much more logical viewpoint of the hardware
compared with using ioctl() calls on the same device node. Finally, using a simpler interface to
the FPGA moves most of the required JFIM functionality into user-mode, further simplifying the
kernel driver and ensuring stability of the system.

The required JFIM calls from D 3.4 can then be mapped into this driver as follows:
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• JFIM_get_resource_map(): Reads out the configuration block-RAM as raw data. This
data structure should then be decoded by the user-land process.

• JFIM_load_accelerator(from, to): Due to the limitations listed in Section 2.2,
the user-land must select the correct bit-file to use and pass the contents of this file to the
reconfig device attribute.

• JFIM_remove_accelerator(from, to): Either causes the user-land to forget the
presence of an accelerator, or for the userland to use a “blanking” bitfile to overwrite a recon-
figurable region with dummy logic.

• JFIM_start_accelerator(to): Writes a “0” to the correct accel_hold attribute,
in order to release the reset of a module and connect its ports to the memory bus.

• JFIM_stop_accelerator(to): Writes a “1” to the correct accel_hold attribute to
disconnect an accelerator from the memory bus, and hold it in reset.

• JFIM_reset_accelerator(to): Toggles accel_hold on and off, since this also
controls the reset of an accelerator.

• JFIM_invoke_accelerator(to): Writes a “1” to the correct accel_start at-
tribute.

• JFIM_read/write_memory(from, to, offset, length): Reads from the cor-
rect mem attribute. The user-land module will need to perform address translation to write to
the correct accelerator.

• JFIM_control(to, addr, len): Functionally identical to JFIM_write_memory,
although without the address mapping stage.
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3 Conclusions and Further Work

The document has provided a concise overview of the development work in Linux support for the
JUNIPER approach, namely:

• Further development of Linux kernel real-time support via the RT_PREEMPT patch and
scheduling policy support for reservations;

• Development of the FPGA interface and support from Linux.

In terms of real-time Linux support for JUNIPER, this work will contine within Workpackage 3,
with a delivery of the final version of Linux for JUNIPER due in month 30. This will include the
FPGA support as outlined in this document. Also, we note that the FPGA support will be further
refined within Workpackage 3 up until month 30 to support any further changes to the Java VM
(Workpackage 4); the use of the JUNIPER programming model (within Workpackage 3); and static
/ dynamic acceleration of the JUNIPER applications on FPGA (Workpackage 2).
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