COOPERATION

AN
W/
JUMPer

JAVA PLATFORM FOR HIGH-PERFORMANCE
AND REAL-TIME LARGE SCALE DATA

Project Number 318763

D3.7 — Hadoop with Real-Time Enhancements

Version 1.0
1 December 2014
Final

Public Distribution

University of York

Project Partners: aicas, HMI, petaFuel, SOFTEAM, Scuola Superiore Sant’Anna, The Open Group,
University of Stuttgart, University of York, Brno University of Technology

Every effort has been made to ensure that all statements and information contained herein are accurate, however
the JUNIPER Project Partners accept no liability for any error or omission in the same.

© 2014 Copyright in this document remains vested in the JUNIPER Project Partners.

D3.7 — Hadoop with Real-Time Enhancements

MIuniper

Project Partner Contact Information

aicas

Fridtjof Siebert
Haid-und-Neue Strasse 18
76131 Karlsruhe

Germany

Tel: +49 721 66396823
E-mail: siebert@aicas.com

HMI

Markus Schneider

Im Breitspiel 11 C

69126 Heidelberg

Germany

Tel: +49 6221 7260 0

E-mail: schneider @hmi-tec.com

petaFuel

Ludwig Adam

Muenchnerstrasse 4

85354 Freising

Germany

Tel: +49 8161 40 60 202

E-mail: ludwig.adam @petafuel.de

SOFTEAM

Andrey Sadovykh

Avenue Victor Hugo 21

75016 Paris

France

Tel: +33 1 3012 1857

E-mail: andrey.sadovykh @softeam.fr

Scuola Superiore Sant’Anna
Mauro Marinoni

via Moruzzi 1

56124 Pisa

Italy

Tel: +39 050 882039

E-mail: m.marinoni @sssup.it

The Open Group

Scott Hansen

Avenue du Parc de Woluwe 56
1160 Brussels

Belgium

Tel: +322 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart
Bastian Koller
Nobelstrasse 19

70569 Stuttgart
Germany

Tel: +49 711 68565891
E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 SGH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley @cs.york.ac.uk

Brno University of Technology
Pavel Smrz

Bozetechova 2

61266 Brno

Czech Republic

Tel: +420 54114 1282

E-mail: smrz@fit.vutbr.cz

Page ii

Version 1.0

Confidentiality: Public Distribution

1 December 2014

WHUNIPER D3.7 — Hadoop with Real-Time Enhancements

Contents
(I__Introduction| 2
(1.1 Layering programming models| 3
2 Java 8 Streams| 4
RI1 JavaStream APIl. 4
[2.2 Implementation of Streams| L o 5
2.2.1 The fork-join framework| o 0oL 5
[2.2.2 Parallel execution of pipelmmes| 6
2.3 Example|. 6
3 Requirements from real-time Big Datal 8
3.1 Distributed Streams| oL 8
[3.2 Lazy evaluation and distributing datal 9
3.3 Distributed Collections and Distributed Stored Collections) 10
[3.4 Summary of requirements|. 11
4__Extensions| 12
4.1 Compute nodes and groups| L 12
4.2 Distributed Collections L 12
4.3 Distributed Streams — Drop-in replacement extensions| 13
4.4 Distributed Streams — Distribution of data extensions| 14
15 Prototype implementation| 16
[5. Compute nodes and groups| 16
5.2 Distributed Collections| o 16
5.3 Distributed Streams — Distribution of data extensions| 16
[5.3.1 Default partitioner], 16
[5.3.2 Thedistributeoperation| 17
[5.4 Distributed Streams — Drop-in replacement extensions| 17
[5.4.1 The reduceoperation|. 17
[5.4.2 The allMatchoperation| 17
[5.4.3 The count operation|, 17
[5.4.4 Thedistinctoperation| 18
[5.4.5 The forEachoperation| 18
1 December 2014 Version 1.0 Page iii

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements APHUNIPER

[6 Mapping MapReduce to JUNIPER| 19
[6.1 MapReduce and Hadoop|o 19
[6.2 Distributed Stream implementation|o 20
(6.3 Illustrative example| 21

(7 Mapping in-memory streaming to JUNIPER 23
[/.1 ~ Spark and comparisons with Distributed Streams| 23
[/.2 Storm and comparisons with Distributed Streams| 24
[7.3 Daistributed Stream implementation for Sparkl 0000 24
[/.4 Distributed Stream implementation for Storm| 0oL L. 24
[7.5 Ilustrative example| 25

8 Tnifial evaluation 27
[8.1 Experimental setup| 27
8.2 Testsl e 27
B3 Resultsandevaluation] 28

[9 Further exploitation of the JUNIPER platform| 29

30

31

31

38

45

52

60

61

61

61

61

[Ad LongPartitioner| i e 62
Page iv Version 1.0 1 December 2014

Confidentiality: Public Distribution

MWIUMIPER D3.7 — Hadoop with Real-Time Enhancements

A Compute node and group API| 63
[A.1 ComputeNode|. 63
[A.2 ComputeGroup| v o v v i i e e e e, 64

References 67

1 December 2014 Version 1.0 Page v

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements APHUNIPER

List of Figures

(1 Layering programming models on top of the JUNIPER approach|

[2 Recursive partitioning of astream.| 6

[3 Conceptual model of a distributed stream (left) and a distributed pipeline (right). In |
| the extended model, boxes indicate compute nodes, and the arrows indicate data flow |
| from data source to pipeline operations.|o L. 8

23 A simple pipeline section illustrating the use of distributel. 10

5 The three stages of a MapReduce computation. Arrows indicate the flow of data. |
| Note that the number of mappers and reducers do not have tobe equal.| 19

(6 Expressing a MapReduce computation 1n terms of distributed streams. Arrows in- |
| dicate the flow of data. The mapper, reducer, local collect and local sort may span |
| multiple stream operations.|o Lo 20

Page vi Version 1.0 1 December 2014
Confidentiality: Public Distribution

MWIuniper

D3.7 — Hadoop with Real-Time Enhancements

Document Control

Version Status Date
0.9 Complete First Draft 28 November 2014
1.0 QA for EC Delivery 1 December 2014
1 December 2014 Version 1.0 Page vii

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

Page viii Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

Executive Summary

This document constitutes deliverable D3.7 — Hadoop with Real-Time Enhancements of work pack-
age 3 of the JUNIPER project.

The purpose of this document is to demonstrate the wider applicability of the JUNIPER programming
model to existing, commercial Big Data systems. The JUNIPER approach, as detailed in previous
deliverables (D2.1 and D2.2), describes a unique programming model for large-scale data processing
systems based around the benefits of real-time analysis and the use of model-driven development to
improve development, deployment and testing.

The approach implements a message-passing communications model that is discussed in deliverables
D2.1 and D2.2. This model is based on MPI, common in high performance computing, but less
common in general purpose computing. This deliverable demonstrates how the JUNIPER approach
is designed to have complementary APIs layered above MPI to implement the programming models
of common Big Data frameworks, such as Hadoop, Spark, or Storm.

This deliverable shows both how this is achieved, and the benefits of doing so.

1 December 2014 Version 1.0 Page 1
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

1 Introduction

This document constitutes deliverable D3.7 — Hadoop with Real-Time Enhancements of work pack-
age 3 of the JUNIPER project.

The purpose of this document is to demonstrate the wider applicability of the JUNIPER programming
model to existing, commercial Big Data systems. The JUNIPER approach, as detailed in previous
deliverables, describes a unique programming model for large-scale data processing systems based
around the benefits of real-time analysis and the use of model-driven engineering to improve devel-
opment, deployment and testing.

The programming model has the following main features:

e A message-passing communications model, the implementation of which is automatically built
by the model-driven engineering code generation during deployment. This allows for a devel-
oper to write highly portable software without worrying about deployment targets, and allows
post deployment testing and scaling to occur without altering software.

e [ocality primitives which allow developers to portably describe the way in which the threads
and data of their system should be mapped to a target cloud or HPC, with the aim of increasing
both performance and predictability of the deployed system.

e Architecture patterns which expose pertinent details about the target hardware to allow soft-
ware to maximise its exploitation of the architecture of the current server, but also to retain
portability.

e FPGA-based acceleration to increase performance and predictability.

The message-passing communications model (discussed in deliverables D2.1 and D2.2) is based on
MPI. This is common in high performance computing, but less common in general purpose comput-
ing.

In order to allow for wider appear and exploitation of the platform, this deliverable demonstrates how
the JUNIPER approach is designed to have complementary APIs layered above it to implement the
programming models of common Big Data frameworks, such as Hadoop, Spark and Storm.

Section|[I.1]discusses how programming models can layer on top of the JUNIPER platform. Section[2]
outlines the Java 8 Stream API. Section [3|details the requirements of a stream API suitable for real-
time Big Data. Our proposed extensions to the existing API are in Section {] and are implemented
in section [5| Section [0 then defines the Hadoop model and how it can be implemented in JUNIPER.
Section[7]discusses Spark and Storm. Section[§]evaluates these approaches and section 9] outlines the
additional features in JUNIPER that can further improve application performance. Finally, section[I0]
concludes.

Page 2 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

User application] [User application]
Y

Complimentary API
(MapReduce, Streaming etc.)

JUNIPER platform
[JUNIPER API]
Java 8 + FPGA Architecture MPI Network
RTSJ acceleration patterns comms. ’
Server hardware platform

Figure 1: Layering programming models on top of the JUNIPER approach

1.1 Layering programming models

The JUNIPER approach is designed to be extensible to new Big Data techniques. Rather than being
tied to a specific technology (such as Hadoop), the platform is designed to provide an efficient set of
services which could be used by any approach. Java libraries can be provided that support different
Big Data programming models, including new models that are developed in the future.

This is illustrated in figure[I] The user can use the JUNIPER approach directly (as shown on the left
of the figure), or they can use a JUNIPER extension API to adopt a different programming model
that they are perhaps more familiar with (as shown on the right).

In this document four extension APIs will be described:

e Extensions for compute nodes and groups,

e Drop-in replacement extensions for streams,

e Distribution of data extensions for streams, and
e Distributed Collections.

1 December 2014 Version 1.0 Page 3
Confidentiality: Public Distribution

[O R N R

D3.7 — Hadoop with Real-Time Enhancements MIunireER

2 Java 8 Streams

This section provides a recap for the data streaming facilities provided by Java 8. From this we can
describe the requirements of the JUNIPER extensions to this model in section [3| while section 4| uses
these requirements to discuss the design and implementation of these extensions.

A stream is a sequence of data elements that can be processed by a pipeline of operations. Streams
can be generated from several sources, including:

e Collections, by calling the st ream method if the desired stream should be sequential, or the
parallelStream method for a parallel stream;

Arrays, by calling the Arrays. st ream method;

Factory methods in the St ream class;

Files, by calling the Buf feredReader.lines method.

After retrieving the stream from a source, a pipeline of aggregate operations (formerly called bulk
data operations) can be performed on it, consisting of zero or more intermediate operations followed
by a terminal operation. From the programmer’s perspective, an intermediate operation returns a new
stream of processed elements from the given stream, and a terminal operation returns a non-stream
result.

Streams, pipelines and operations have the following properties and restrictions:

e Pipelines are evaluated lazily. Only enough elements are consumed, or “pulled” through the
pipeline, as required by the terminal operation.

e Pipelines are linear. There is a single stream source, and there is no branching mechanism for
routing elements to different downstream operations.

e Streams can be traversed at most once. To use the data source again, a new stream has to be
created.

e Operations must not change the data source.

Java 8 Streams further classify intermediate operations as stateless and stateful, depending on whether
the operation needs to hold any state as data passes through. For example, map is a stateless operation
as each element can be processed independently of another. However, the distinct operation (re-
move all duplicate elements from the Stream) is stateful because it must keep track of all encountered
elements.

2.1 Java Stream API

A list of all intermediate and terminal operations defined in Java 8 Streams is provided below. Full
details of the Java 8 Stream API can be found at [[10].

public interface Stream<T> extends BaseStream<T, Stream<T>> {
// Intermediate operations
public Stream<T> distinct ();
public Stream<T> filter (Predicate <? super T> predicate);
public <R> Stream<R> flatMap (

Page 4 Version 1.0 1 December 2014
Confidentiality: Public Distribution

[cBENIe)

11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

Function <? super T,? extends Stream<? extends R>> mapper);
public DoubleStream flatMapToDouble (

Function <? super T,? extends DoubleStream> mapper);
public IntStream flatMapTolnt(

Function <? super T,? extends IntStream> mapper);
public LongStream flatMapToLong/(

Function <? super T,? extends LongStream> mapper);
public Stream<T> limit(long maxSize);
public <R> Stream<R> map(Function <? super T,? extends R> mapper);
public DoubleStream mapToDouble(ToDoubleFunction <? super T> mapper);
public IntStream mapTolnt(TolntFunction <? super T> mapper);
public LongStream mapToLong(ToLongFunction<? super T> mapper);
public Stream<T> peek (Consumer<? super T> action);
public Stream<T> skip(long n);
public Stream<T> sorted ();
public Stream<T> sorted (Comparator<? super T> comparator);
public Object[] toArray();
public <A> A[] toArray(IntFunction<A[]> generator);

// Terminal operations

public boolean allMatch (Predicate <? super T> predicate);

public boolean anyMatch(Predicate <? super T> predicate);

public <R,A> R collect(Collector <? super T,A,R> collector);

public <R> R collect (Supplier <R> supplier,
BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner);

public long count();

public Optional <T> findAny ();

public Optional <T> findFirst ();

public void forEach(Consumer<? super T> action);

public void forEachOrdered (Consumer<? super T> action);

public Optional <T> max(Comparator<? super T> comparator);

public Optional <T> min(Comparator<? super T> comparator);

public boolean noneMatch(Predicate <? super T> predicate);

public Optional <T> reduce(BinaryOperator <T> accumulator);

public T reduce(T identity , BinaryOperator <T> accumulator);

public <U> U reduce (U identity , BiFunction<U,? super T,U> accumulator,
BinaryOperator <U> combiner);

//

2.2 Implementation of Streams

This section outlines how Java 8 Streams are implemented by default.

2.2.1 The fork-join framework

Introduced in Java 7, the fork-join framework allows programmers to specify tasks that can be sub-
divided and executed in parallel on multicore systems. Such tasks are submitted to a fork-join pool,
which consists of a set of worker threads. Each worker thread has a task queue, and when empty,

1 December 2014 Version 1.0 Page 5

Confidentiality: Public Distribution

AN B W

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

steals tasks from other threads’ queues. To simplify usage of the framework, a common fork-join
pool is defined, with the number of worker threads defaulting to one less than the number of cores
on the system. This common pool receives tasks from executing pipelines. In the context of Java
Streams, a task is the pipeline that operates on part of the stream covered by a spliterator.

2.2.2 Parallel execution of pipelines

While an iterator is sufficient for executing a sequential pipeline, a spliterator is needed to operate on
a parallel pipeline. A spliterator recursively partitions the stream by “splitting” itself to create child
spliterators, allowing threads to then traverse the multiple spliterators in parallel.

The spliterator methods of interest are shown below:

public interface Spliterator <T> {
public default void forEachRemaining (Consumer<? super T> action);
public Spliterator <T> trySplit ();

To execute a pipeline in parallel, a spliterator covering the entire associated stream is first created.
Recursive partitioning is achieved by creating child spliterators from parent spliterators when the
trySplit method is called, as shown in Figure 2]

‘ Spliterator 0 ‘ Initial stream

/\

‘ Spliterator 1 ‘ Spliterator 0 ‘ After 1 partition

TN

‘ Spliterator 2 ‘ Spliterator 1 ‘ Spliterator 3 ‘ Spliterator 0 ‘ After 3 partitions

Figure 2: Recursive partitioning of a stream.

Partitioning stops when the trySplit method decides that further partitioning is inefficient, im-
possible or, if the stream’s size is known in advance, when the default work granularity of 4 tasks
per core is reached (this is to account for uneven workloads or when worker threads are blocked [9]).
Each task is then submitted to the common fork-join pool for execution. When a task is executed, the
data elements in the corresponding spliterator are traversed with the forEachRemaining method.
Thus, the same element is moved through the entire pipeline by the same worker thread.

2.3 Example

The following method (from [3]) illustrates the use of Java 8 Streams. It counts the number of words
in a collection of lines and prints each word together with its occurrence on a separate line.

Page 6 Version 1.0 1 December 2014
Confidentiality: Public Distribution

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

MIunipEr

D3.7 — Hadoop with Real-Time Enhancements

static void wordcount(Collection <String> lines) {

}

// Word boundary regular expression
Pattern pat = Pattern.compile("\\s+");
Map<String , Long> words = lines
// Get parallel stream from collection of lines
.parallelStream ()
// Replace line with words
.flatMap (line —> Arrays.stream(pat.split(line)))
// Count words
.collect (Collectors.groupingBy (
w —> w, TreeMap::new, Collectors.counting ()));
// Get collection of (word, count) pairs
Set<Map. Entry<String , Long>> entries = words.entrySet ();
entries
// Get sequential stream
.stream ()
// Print each (word, count) pair
.forEach(e —> {

System.out. println (e.getKey () + "\t" + e.getValue());

1)

Lines 3 to 10 establish a stream that outputs a TreeMap of words and their occurrences. The
flatMap operation takes a line of text (St ring) as input and outputs a stream of words (St rings)
backed by the array returned from the split method. The collect operation accumulates new
words in a TreeMap and keeps a count of their occurrences.

The ent rySet method turns the resulting TreeMap into a Set of (word, count) pairs. Finally, a
stream of (word, count) pairs is established and the forEach operation prints each pair to standard
output.

1 December 2014 Version 1.0

Confidentiality: Public Distribution

Page 7

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

3 Requirements from real-time Big Data

Since Java 8 Streams exist within a single JVM, and JVMs tend to only support individual SMP or
ccNUMA machines, using them to target Big Data systems requires an extension of the programming
model to support computations involving multiple nodes. A primary requirement of the extended
model is to be a drop-in replacement of the existing model. This implies that the properties of Java 8
Streams (for example, the lazy evaluation of pipelines) should be preserved as far as possible unless
they conflict with requirements for executing in a distributed environment.

Streams and pipelines can be distributed among compute nodes independently (see Figure[3). A data
source in a distributed stream is spread over or accessed by multiple nodes, while operations in a
distributed pipeline span multiple nodes. Both methods potentially speed up processing, depending
on the workload. An I/O-bound workload will see a speed improvement on a distributed stream,
while a CPU-bound workload will benefit more on a distributed pipeline. Big Data computations are
usually I/O-bound [7], thus emphasis should be on a distributed stream model. However, support for
a distributed pipeline model must be available.

The JUNIPER communications model described in deliverable D2.1 already gives the developer a
way to express a graph of communications in a distributed system and therefore is likely to make a
good base for the implementation of distributed pipelines.

3.1 Distributed Streams

A Distributed Stream facilitates parallelism by having a replicated pipeline that operates on different
parts of a dataset, which is usually located in multiple nodes. There are several reasons for using
Distributed Streams:

e The dataset is too large to fit on disk in one node.
e [t is too slow to read the entire dataset from a single node (due to limited bandwith, for exam-

ple).
node0
I RIOSOSOR0

nodel [— node0 nodel

3
Data
source
N node2 E node2

Figure 3: Conceptual model of a distributed stream (left) and a distributed pipeline (right). In the
extended model, boxes indicate compute nodes, and the arrows indicate data flow from data source
to pipeline operations.

B B C

Page 8 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

e The dataset is located in storage nodes with specialised hardware, allowing fast parallel data
access.

To maintain compatibility, Distributed Streams must be a drop-in replacement for Java 8 Streams.
For example, the following which computes the sum of squares of a stream of integers:

long total = stream .map(n —> n % n).sum();

must not need modification regardless of whether the st ream variable refers to a stream of integers
or a distributed stream of integers. It will always compute the sum of the entire stream, distributed or
not. Each node executing the program gets the same return value from the terminal operation.

At certain points in the pipeline, it may be necessary for data to be distributed and gathered over
the compute nodes to do partitioning and aggregation, such as in the MapReduce shuffle stage. Java
8 Streams support gathering of data with the general-purpose terminal operations collect and
reduce, but there are currently no operations for distributing data according to a given algorithm
(as there is no requirement to do this in the current Java 8 streams). Therefore, low-level pipeline
operations which facilitate the transfer of data using inter-node communication are needed for dis-
tributed streams.

These operations must also be general enough so that they can be used in a distributed pipeline model
(to send data from one segment of the pipeline to another across nodes).

To facilitate communication across nodes, there also needs to be a system of identifying and grouping
nodes. The programmer must be allowed to specify which node or group of nodes a computation
takes place on, and the destination of operations that distribute data.

3.2 Lazy evaluation and distributing data

The Distributed Streams model does not require that all participating compute nodes execute exactly
the same operations in the evaluation of a pipeline. For example, a pipeline can read data on a given
set of input nodes, filter it on a different set of compute nodes, and then store it on a further different
set of output nodes. This is described using the distribute operation introduced in section [
which addresses the distribution of data requirement. distribute can be viewed as moving the
evaluation of part of the pipeline from one subset of the target cluster to another. It is also essential
for splitting and joining multiple streams, a requirement discussed in section [3.1]

However, the presence of distribute causes a problem with the lazy evaluation of pipelines.
Consider the simple pipeline in figure 4 In this pipeline, the a operation is executing on multiple
nodes in the target cluster, then after a distribute the c operation is only executing on a single
node. This is a common pattern when a lot of high complexity processing is performed to generate
a relatively small amount of output, such as searching a large dataset. Under lazy evaluation, ¢
determines the rate at which data items are pulled through the pipeline. c still executes the evaluation
in parallel (because it is a parallel stream) but now the programmer must ensure that sufficient threads
are spawned on c to keep enough data items in flight so that all of the instances of a are kept busy. A
similar problem exists in reverse, when a single instance of a is distributed to many instances of c.

This is problematic for the following reasons:

1 December 2014 Version 1.0 Page 9
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

—» a
——{ a |——» distribute() }—B—»
—» a

Figure 4: A simple pipeline section illustrating the use of distribute.

1. It creates an unnecessary dependency in otherwise unrelated software. Now, the number of
threads spawned in c affects the concurrency potential of a.

2. It leaks an abstraction detail. The programmer must now worry about deployment concerns
when programming ¢, when they only should have to consider algorithmic issues.

It should be highlighted that this is not simply a problem of matching data rates and balancing pipeline
stages, which remains a problem with this model (as with Hadoop, Spark and Storm). This is a
problem with expressing the potential concurrency throughout a pipeline. The entire purpose of
distribute is to signify that the potential concurrency has changed because a different set of
target nodes is now evaluating the pipeline.

Consequentially, the solution employed is to view distribute as terminating the current pipeline,
and starting another. This allows a different amount of parallelism to be expressed in the new stream,
and ensures that each section is evaluated as efficiently as possible.

3.3 Distributed Collections and Distributed Stored Collections

Deliverable D2.2 proposed the concept of Stored Collections, which extend Java 8 (in-memory)
collections to efficiently read large datasets. Stored Collections are an example of the real-time
technologies that are provided by the JUNIPER platform, integrating with JUNIPER kernel support
to allow high priority tasks to reserve disk access bandwidth. This means that lower priority parts of
the system cannot interfere, allowing for greater QoS guarantees.

Distributed forms of in-memory collections and Stored Collections are needed for caching interme-
diate results from Distributed Streams. Thus recomputing data is avoided at the expense of memory
or disk space usage. To support this, it must be possible to save data to these collections from a
Distributed Stream.

Additionally, it should be possible to extend a non-distributed collection without needing to reimple-
ment the distributed version from scratch.

Page 10 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

3.4 Summary of requirements

This section has shown that there are four main requirements:

1. Distributed Collections and Distributed Stored Collections are needed for storing intermediate
results.

2. Distributed Streams must be a drop-in replacement for Java 8 Streams.

3. New eager operations for distributing data across nodes are needed, such as the distribute
operation described in section 4]

4. Support for splitting and combining streams is needed.

From these we can also derive a further requirement, which is that the API extensions must provide
a mechanism for the discovery and grouping of nodes in the cluster. This is not normally covered by
Java, but is required so that distributed operations can be targeted at specific subsets of the cluster.

1 December 2014 Version 1.0 Page 11
Confidentiality: Public Distribution

01NN A W=

— e e
DN B W= O\

—_—

D3.7 — Hadoop with Real-Time Enhancements MIunireER

4 Extensions

This section addresses the requirements identified in section [3] and proposes a number of extensions
to the existing JUNIPER programming model.

4.1 Compute nodes and groups

Before generalised distribution of data can be supported, a method of identifying compute nodes and
groups of compute nodes is needed for decisions such as which node to send data to. We therefore de-
fine the ComputeNode class and the ComputeGroup class, whichisa List of ComputeNodes:
public class ComputeNode {

public String getName ();
public boolean isSelf ();

public static ComputeNode getSelf ();
public static ComputeNode findByName(String name);

}

public class ComputeGroup extends ArrayList<ComputeNode> {
public ComputeGroup ();
public ComputeGroup(Collection <ComputeNode> nodes);
public ComputeGroup (ComputeNode node);

public static ComputeGroup getCluster ();
}

Each compute node in the cluster is represented by a ComputeNode and has a unique name. There
are also methods to get the current node, or a specific node by its name. A compute group is a list
of compute nodes and is represented by a ComputeGroup. The entire cluster can be retrieved by
calling the getCluster method. Standard Java Li st methods can be called to modify a compute
group’s members. Complete details of the API can be found in appendix

4.2 Distributed Collections

To orthogonally support in-memory, on-disk, non-distributed and distributed forms of collections, we
define the following interfaces:

Properties In-memory On-disk
Non-distributed | Collection StoredCollection
Distributed DistibutedCollection | DistributedStoredCollection

The distributed versions of collections need replacement methods to return Distributed Streams. They
also need to know the participating compute nodes. Thus, the Distributed Collection interface is
defined as follows:

public interface DistributedCollection <E> extends Collection <E> {

public ComputeGroup getComputeGroup ();
public DistributedStream <E> stream ();

Page 12 Version 1.0 1 December 2014
Confidentiality: Public Distribution

N

—

[c BN e NV I O R S

NSRS I S 2N (S I SR NS I \S I S I S I\ e v a s e s e e
O X I AN HKH WD, OOWXINWN R WD~ O\

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

public DistributedStream <E> parallelStream ();

}

The Distributed Stored Collection interface simply extends its parent interfaces:

public interface DistributedStoredCollection <E>
extends StoredCollection<E>, DistributedCollection <E> {

}

To save data into one of these collections over a compute group, the 1ocalCollect operator can
be used together with the appropriate collector, supplier, accumulator and/or combiner parameters
(e.g. the supplier allocates a new DistributedCollection, etc.). Thus data on each node is
stored locally, avoiding unnecessary and costly communication between nodes.

4.3 Distributed Streams — Drop-in replacement extensions

To make Distributed Streams a drop-in replacement for Java 8 Streams, we propose a new
DistributedStream interface that extends the existing St ream interface. The full definition of
this interface can be found in appendix [A]

public interface DistributedStream <T> extends Stream<T> {
public DistributedStream <T> distinct ();
public DistributedStream <T> filter (Predicate <? super T> predicate);
public <R> DistributedStream <R> flatMap (
Function <? super T,? extends Stream<? extends R>> mapper);
public DistributedDoubleStream flatMapToDouble (
Function <? super T,? extends DoubleStream> mapper);
public DistributedIntStream flatMapTolnt(
Function <? super T,? extends IntStream> mapper);
public DistributedLongStream flatMapToLong(
Function <? super T,? extends LongStream> mapper);
public DistributedStream <T> limit(long maxSize);
public <R> DistributedStream <R> map(
Function <? super T,? extends R> mapper);
public DistributedDoubleStream mapToDouble (
ToDoubleFunction <? super T> mapper);
public DistributedIntStream mapTolnt(
ToIntFunction <? super T> mapper);
public DistributedLongStream mapToLong(
ToLongFunction<? super T> mapper);
public DistributedStream <T> parallel ();
public DistributedStream <T> peek (Consumer<? super T> action);
public DistributedStream <T> sequential ();
public DistributedStream <T> skip(long n);
public DistributedStream <T> sorted ();
public DistributedStream <T> sorted (Comparator<? super T> comparator);

//

1 December 2014 Version 1.0 Page 13
Confidentiality: Public Distribution

H Lo =

D3.7 — Hadoop with Real-Time Enhancements MIunireER

All operations that return a St ream need to be overridden by those that return a Distributed-
Stream. The DistributedStream interface provides versions of the Stream operations like
distinct, flatMap, etc. that return DistributedStreams instead of St reams.

Primitive-type stream interfaces (IntStream, LongStream and DoubleStream) will have
similar interface definitions (DistributedIntStream, DistributedLongStream and
DistributedDoubleStream). These interfaces are also defined in appendix [Al

In a distributed environment, stateful intermediate operations potentially need to know the elements
in every participating node in order to give a correct output. This may imply transferring all elements
to a single node or doing remote comparisons, both of which result in heavy network traffic and/or
increased memory usage. To address this issue, we provide new operations that deal only with local
data (see section 4.4 for further discussion).

4.4 Distributed Streams — Distribution of data extensions

A functional interface for user-specified partitioning of data is defined as follows:

@Functionallnterface

public interface Partitioner <T> {
public int partition (T data);

1

Similar interfaces for primitive-type partitioners (IntPartitioner, LongPartitioner and
DoublePartitioner) for the appropriate primitive-type Distributed Streams are also defined
and can be found in appendix [A]

The partition method accepts a data element and returns an index representing a node in the
compute group. For ease of use, it is not important for the programmer to know the size of the
compute group, so if the index is out of range it will be wrapped around by the framework. This
makes the partitioner suitable for range partitioning if the compute group size is known, as well as
load balancing methods such as hash-based partitioning.

With a method to partition data, we propose the addition of several variants of the distribute
method that transfer data from one compute group to another, and of methods to modify and retrieve
the compute group:

public interface DistributedStream <T> extends Stream<T> {
public DistributedStream <T> distribute ();
public DistributedStream <T> distribute (Partitioner <? super T> p);
public DistributedStream <T> distribute (ComputeGroup grp);
public DistributedStream <T> distribute (
ComputeGroup grp, Partitioner <? super T> p);
public DistributedStream <T> distribute (ComputeNode node);
public DistributedStream <T>[] distribute (ComputeGroup[] grps);
public DistributedStream <T>[] distribute (
ComputeGroup [] grps, Partitioner <? super T> p);

public ComputeGroup getComputeGroup ();
public void setComputeGroup (ComputeGroup grp);

Page 14 Version 1.0 1 December 2014
Confidentiality: Public Distribution

15
16

0NN N kW=

DO DD = = = = e e e e e
—_— O 000 IO NP WND = OO

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

//
}

Parameters change the behaviour of distribute as follows:

e If used without parameters, distribute sends data to the same compute group according to
a default hash-based partitioner.

e If a partitioner is given, it is used in place of the default hash-based partitioner.

e If a compute group/node is given, data is partitioned and sent to that group/node instead. The
nodes in the specified compute group do not have to be part of the initial compute group.

e If an array of compute groups is given, data is distributed to each group in the collection as
described above, with every group receiving the same elements.

A distribute operation returns either a new Distributed Stream or an array of new Distributed
Streams (in the case of splitting a stream) consisting of the same data elements which may have been
moved across nodes. Combining streams is currently being worked on.

To complete the extensions, the behaviour of some terminal operations need to be addressed. Due to
the drop-in replacement requirement, terminal operations return the same result on all participating
nodes. However, for operations such as collect, a large result requires significant network com-
munication to replicate data elements on each node. This may be undesirable or unnecessary. Hence,
we propose the addition of local variants of these operations that prevent data from being replicated
on other nodes:

public interface DistributedStream <T> extends Stream<T>

{
//

public <R, A> R localCollect(Collector <? super T, A, R> collector);
public <R> R localCollect(Supplier<R> supplier ,

BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner);
public DistributedStream <T> localDistinct ();
public DistributedStream <T> localForEach (Consumer<? super T> action);
public DistributedStream <T> localLimit(long maxSize);
public DistributedStream <T> localPeek (Consumer<? super T> action);
public Optional <T> localReduce (BinaryOperator <T> accumulator);
public T localReduce (T identity , BinaryOperator<T> accumulator);
public <U> U localReduce (U identity ,

BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner);
public DistributedStream <T> localSkip (long n);
public DistributedStream <T> localSorted ();
public DistributedStream <T> localSorted (Comparator<? super T> comparator);

//
}

Both variants behave identically on single-node clusters. The local operations can be used to
construct more efficient pipelines. On-disk caching of results can be achieved by having the
localCollect operation accumulate data into a Distributed Stored Collection.

Examples showing the use of Distributed Streams can be found in section[6.3]

1 December 2014 Version 1.0 Page 15
Confidentiality: Public Distribution

EENERUSEE (O

D3.7 — Hadoop with Real-Time Enhancements MIunireER

5 Prototype implementation

This section describes how the library is implemented. The JUNIPER project work packages do
not require maturation of these extensions. They exist to demonstrate the wide applicability of the
platform for a range of Big Data paradigms. However, they are very useful for real-world use of the
platform and so York intends to continue implementation and academic exploitation of this work.

5.1 Compute nodes and groups

Our implementation uses MPI [4] to communicate between nodes. Each compute node is identified
by an integer identical to its global MPI communicator (COMM_WORLD) rank. The name of each
node is the string “node” concatenated with its rank (in other implementations, this can be read
from a configuration file, for example). The ComputeNode class in our implementation is also the
program’s entry point. The main method initialises MPI, discovers the other nodes in the cluster and
runs the actual program. It also cleans up after the program finishes.

As defined in section {1 a compute group is an ArrayList of compute nodes. Thus it supports
all ArrayList operations. The main addition is the get Cluster method, which creates a new
compute group containing all nodes in the cluster as discovered by ComputeNode .main. The first
node in each group is designated as the root.

This implementation assumes no node failures; this will be addressed in future work.

5.2 Distributed Collections

To carry out evaluations in section [§] we implemented a DistributedStringStored-
Collection using the StringStoredCollection class previously written in [S]] as follows:

public class DistributedStringStoredCollection extends StringStoredCollection
implements DistributedCollection <String > {

}

The implementation assumes that the dataset is distributed over the entire cluster, and that the files can
be identified using the same path prefix and a suffix that varies with each node (this is to guarantee
unique filenames for single multicore tests where the dataset is distributed over files in the same
directory).

5.3 Distributed Streams — Distribution of data extensions

5.3.1 Default partitioner

The default hash-based partitioner in our implementation computes the hash by calling the
Object .hashCode method.

Page 16 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

5.3.2 The distribute operation

As mentioned in section [3.2] the operation terminates the existing pipeline and starts a new one. The
following algorithm describes the core of all di st ribute operation variants:

The existing pipeline is terminated with a localForEach operation, which sends each element
to the appropriate destination node. (The MPI implementation serialises each element. Thus, our
implementation can only send objects that implement the Serializable interface.) After all
elements are sent, an end-of-data marker is sent to all participating nodes. We use a null object
message to represent this marker.

Concurrently, a new pipeline is created and converts incoming messages into data elements. It deter-
mines that no more data is available when it has received end-of-data markers from all participating
nodes.

Since stream computations block until the terminal operator has output a result, extra threads are
created to work around the blocking and keep the two pipelines executing concurrently. This incurs
overheads as the OS may repeatedly schedule and deschedule the threads.

5.4 Distributed Streams — Drop-in replacement extensions

We give details of how some of the Distributed Stream operations are implemented to satisfy the
drop-in replacement requirement.

5.4.1 The reduce operation

There are a number of reduce operations for each stream type, but all have implementations similar
to the following:

1. A reduction is performed on local data elements with the 1ocalReduce operation.
2. The local result is sent to the first node in the compute group.

3. The first node receives and accumulates all local results, and sends the final result to the other
nodes.

4. The other nodes receive the final result. All nodes return the same value.

5.4.2 The allMatch operation

The allMatch operation can be expressed as a reduction with the result being the logical-AND of
local al1Match operations on each participating node.

5.4.3 The count operation

The count operation can be expressed as a reduction with the result being the sum of local count
operations on each participating node.

1 December 2014 Version 1.0 Page 17
Confidentiality: Public Distribution

(O I S R

D3.7 — Hadoop with Real-Time Enhancements MIunireER

5.4.4 The distinct operation

The distinct operation can be expressed in terms of the di st ribute operation followed by the
localDistinct operation.

stream

.distribute ()
.localDistinct ()

The distribute operation sends elements with the same hash value (which includes all identical
elements) to the same node. The localDistinct operation then removes duplicate elements
within each node.

5.4.5 The forEach operation

To be a drop-in replacement, each participating node needs to perform the specified action on every
element in the Distributed Stream. Thus, each node broadcasts its local data elements to other nodes,
thereby ensuring that each local stream contains elements from all nodes. However, this is unlikely
to be efficient. The 1ocalForEach operation avoids broadcasting elements and is intended for
programmers to optimise their implementations.

Page 18 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

Node 0 Node 1 Node 2

Figure 5: The three stages of a MapReduce computation. Arrows indicate the flow of data. Note that
the number of mappers and reducers do not have to be equal.

6 Mapping MapReduce to JUNIPER

Section [5|described how the API extensions are implemented. The following sections will now show
how the programming models of three popular Big Data approaches (Hadoop, Spark, and Storm) can
be expressed in terms of this model.

Evaluation of the implementation and these comparisons can be found in section [§]

6.1 MapReduce and Hadoop

MapReduce [6] is a popular batch processing model for Big Data computations, allowing compu-
tations on a dataset that is typically partitioned over a cluster of nodes. Hadoop [1] is a popular
open source implementation of MapReduce. This section first gives an overview of the program-
ming model (including Hadoop-specific details where necessary), then demonstrates how it can be
implemented with Distributed Streams.

Before a MapReduce computation takes place, the required data needs to be distributed over the clus-
ter. Hadoop achieves this with the Hadoop Distributed File System (HDFS) [12], which is overlaid
on the host file system and manages the distribution of datasets across a cluster. Files in HDFS are
divided into blocks (usually of 64MB) and replicated on different nodes by default. To avoid data
coherency issues, files can only be written to once.

MapReduce requires programmers to implement mappers and reducers, each of which normally run
on a node in the cluster. With reference to Hadoop, a MapReduce computation consists of three
stages (also see Figure [3).

1. The map stage: Input data from a given file in HDFS is processed by a set of mappers, which
output key-value pairs as a result.

1 December 2014 Version 1.0 Page 19
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

Node 0 Node 1 Node 2
ik "
» Distribute = Distribute
Shuffle
Collect & sort I Collect & sort I

Figure 6: Expressing a MapReduce computation in terms of distributed streams. Arrows indicate the
flow of data. The mapper, reducer, local collect and local sort may span multiple stream operations.

2. The shuffle stage: The key-value pairs are collected over a set of reducers, with the same keys
sent to the same reducer. For each key, the values are collected and sorted in a key-value-list
pair.

3. The reduce stage: Each reducer processes all given key-value-list pairs and outputs the result in
a local HDFS file. The full result of the computation is the concatenation of all partial results.

If the dataset is spread across the mapper nodes, Hadoop can optimise execution times by having
each mapper node work on its local data.

6.2 Distributed Stream implementation

With Java 8 streams, performing MapReduce computations across a cluster was not possible as the
framework operated within a single node. Distributed streams solve this problem by defining opera-
tions to transfer data across nodes. In MapReduce, the shuffle stage is where data transfer is needed.
This stage can be broken down into sub-stages and implemented with distributed streams as follows:

1. The distribute operation transfers data (in key-value form) between compute nodes such
that those with the same key are sent to the same node.

2. The localCollect operation on each node accumulates incoming data into a collection of
key-value-list pairs. The value lists are optionally sorted. Since 1ocalCollect is aterminal
operation, a new stream consisting of elements in the collection is created and passed to the
reduce stage.

Figure [6] shows in general how a MapReduce computation can be represented with pipeline opera-
tions.

Page 20 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

Special cases such as summing, counting and collecting are built into Distributed Streams. Hence the
resulting code is more concise if such operations are used.

6.3 Illustrative example

We return to the word-count application introduced in section[2.3] which outputs a sorted list of words
together with their frequencies, as an example of using Java 8 Streams and Stored Collections for
MapReduce computations. Since Distributed Streams and Distributed Stored Collections are drop-
in replacements, the same algorithm can be used on an input text file distributed over the cluster,
and the computation also occurs cluster-wide. Performance can be improved, for example, by using
localForEach to output only the elements on the local node:

1 void wordcount(DistributedCollection <String> lines) {

2 Pattern pat = Pattern.compile("\\s+");

3 Map<String , Long> words = lines

4 .parallelStream ()

5 // Map stage

6 .flatMap (line —> Arrays.stream(pat.split(line)))

7 // Shuffle stage

8 .collect (Collectors . groupingBy (

9 w —> w, TreeMap::new, Collectors.counting ()));

10 Set<Map. Entry<String , Long>> entries = words.entrySet ();
11 entries

12 .stream ()

13 // Reduce stage

14 .localForEach(e — {

15 System.out. println (e.getKey () + "\t" + e.getValue()); });
16 }

Since the Distributed Collection has information on the location of the dataset in the form of a com-
pute group, only the nodes in that group will take part in the computation.

If only a subset of nodes are needed for reduction, the pipeline can be modified to distribute the
elements to the required subset. Using the example above, the addition of a distribute operation in
line 8 funnels the data for reduction into a single node:

1 void wordcount(DistributedCollection <String> lines) {

2 Pattern pat = Pattern.compile("\\s+");

3 Map<String , Long> words = lines

4 .parallelStream ()

5 // Map stage

6 .flatMap (line —> Arrays.stream(pat.split(line)))

7 // Shuffle stage — send to first node in compute group
8 .distribute (lines . getComputeGroup (). get(0))

9 .collect (Collectors.groupingBy (

10 w —> w, TreeMap::new, Collectors.counting ()));

11 Set<Map. Entry<String , Long>> entries = words.entrySet ();
12 entries

13 .stream ()

14 // Reduce stage

15 .localForEach(e — {

1 December 2014 Version 1.0 Page 21
Confidentiality: Public Distribution

16
17

D3.7 — Hadoop with Real-Time Enhancements

MIunipeEr

System.out. println (e.getKey () + "\t" + e.getValue ());

1)

Page 22 Version 1.0
Confidentiality: Public Distribution

1 December 2014

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

7 Mapping in-memory streaming to JUNIPER

Though suitable for many applications, the MapReduce model is inflexible due to the fixed stage se-
quence. More recently, focus has shifted to in-memory stream-based models for Big Data processing,
with the Spark [2] and Storm [8] frameworks being prominent examples of such models. We focus
on these frameworks in this section, comparing their models with that of Distributed Streams.

7.1 Spark and comparisons with Distributed Streams

Spark removes some of MapReduce’s limitations by allowing pipeline-based data processing. Instead
of implementing mappers and reducers, programmers specify a pipeline of operations on a Resilient
Distributed Dataset (RDD). An operation either returns a new RDD (a transformation, which can be
chained) or returns a value (an action, which terminates the pipeline).

Since both Spark and Distributed Streams are stream-based programming models, there are some
similarities. For example, Spark pipelines are also lazily evaluated, and their Java syntax resembles
that of Java 8 streams. Also, transformations are analogous to intermediate operations and actions
are equivalent to terminal operations.

To demonstate the similarities between Spark’s and Distributed Streams’ operations, the following
table lists a number of Spark operations together with the equivalent ones in Distributed Streams:

Spark operation Distributed Stream equivalent Description

.countByKey () | .collect (Collectors. Counts the occurrence of each key
groupingBy (e and returns a map of key-count
-> e.getKey (), pairs.
Collectors.counting()))

.filter (p) .filter (p) Removes elements in the Dis-

tributed Stream that do not satisfy
the predicate.

.foreach (f) .forEach (f) Execute a function over each ele-
ment.
.groupByKey () | .collect (Collectors. Groups key-value pairs into key-
groupingBy (e -> e)) value-list pairs.
.map (f) .map (f) Replaces each element with those
from the mapping function.
.reduce (f) .reduce (f) Reduces the elements to a single
value using a binary function.
.take (n) .limit (n) .collect (Returns the first n elements in a
Collectors.toList ()) List.

There are also significant differences between the models. Spark was designed specifically for Big
Data applications, whereas distributed streams have to maintain compatibility with Java 8 streams.
RDDs can be reused, unlike Java 8 Streams, and Spark allows caching of data in memory for
frequently-used RDDs to avoid recomputing data. Also, Java 8 streams are conceptually separate
from Java collections (which can be the source of a stream), but Spark RDDs do not have such a dis-
tinction. Depending on its position in the pipeline, an RDD may contain data from HDFS blocks,

1 December 2014 Version 1.0 Page 23
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

or transformed data cached in memory, or even information on how the data should be processed (to
support lazy evaluation). This allows the entire pipeline to be lazy even across compute nodes.

Since Spark is a high-level framework, it does not have operations specifically for distributing data
across nodes. This is done by the various transformations and actions when required.

7.2 Storm and comparisons with Distributed Streams

Storm executes fopologies which run indefinitely on a cluster. A topology defines a directed acyclic
graph of nodes and data streams (vertices). A stream consists of an unbounded sequence of tuples.
A node is either a spout (data source — a Twitter feed, for example) or bolt (consumes and processes
streams, and may emit new streams).

Storm is also a stream-based programming model, but it is eager and emphasises task-parallel com-
putations, setting it apart from Distributed Streams which are mainly lazy and data-parallel. Nodes
in Storm normally run different computations which are then joined together with streams. Hence it
is closer to a distributed pipeline model (see section [3)) where each node processes a segment of the
pipeline and does not have knowledge of the entire pipeline. On the other hand, a Distributed Stream
is primarily replicated pipeline-based and makes use of compute groups to partition the cluster for
different data-parallel computations.

7.3 Distributed Stream implementation for Spark

Due to the similarities in programming models, parts of the Spark and Distributed Stream pipelines
can be almost identical. However, a Distributed Stream implementation will need to be aware of the
following due to differences in the programming models:

e A feature of Spark is that it can provide caching and reuse of computed values in a pipeline.
This is not currently automated by Distributed Streams. The programmer must implement this
manually through the use of 1localCollect and distributed collections.

e Since Spark has the concept of a driver program which defines the pipeline and submits work
to the master node, actions such as collect send data to the driver instead of to all processes
on participating nodes. To achieve a similar effect of sending all data to one compute node, the
distribute (node) operation can be used.

e Like Distributed Stream operations, a number of Spark transformations and actions require
significant inter-node communication when dealing with datasets spanning multiple nodes and
should be avoided if there are still many elements in the dataset.

e If the underlying data source has no redundancy (we believe this is rare as common distributed
file systems such as HDFS and Lustre have this property), Distributed Stored Collections will
need to implement it.

7.4 Distributed Stream implementation for Storm

Since Storm uses a distributed pipeline model, the programmer can achieve a similar result by split-
ting the pipeline into several segments and executing the di st ribute operation at segment bound-

Page 24 Version 1.0 1 December 2014
Confidentiality: Public Distribution

0NN kAW~

11
12

[e>BNeRNe IR e Y I

—

0NN AW~

—_— e —
N - O O

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

aries. For nodes that send data to multiple destinations, the distribute variant that accepts a
collection of compute groups can be used.

7.5 Illustrative example

To demonstrate the similarities and differences between Spark and Distributed Streams, we refer to
the word-count example in section [6.3}

static void wordcount(Collection <String> lines) {
Pattern pat = Pattern.compile("\\s+");
lines
.parallelStream ()
.flatMap (line —> Arrays.stream(pat.split(line)))
.collect (Collectors . groupingBy (
w —> w, TreeMap::new, Collectors.counting()))
.entrySet ()
.stream ()
.forEach(e — {
System.out. println (e.getKey () + "\t" + e.getValue()); });

}

The corresponding Spark code [3]] (using Java 8) is as follows:

static void wordcount(JavaRDD<String > lines) {
Pattern pat = Pattern.compile("\\s+");
List<Tuple2<String , Integer>> result = lines
.flatMap(line —> Arrays.asList(pat.split(line))
.mapToPair(s —> new Tuple2<String , Integer >(s, 1)) // Convert to (word, 1)
.reduceByKey ((il, i2) —> il + i2) // Add pairs with same words together
.collect (); // Save as list of (word, count) pairs
for (Tuple2<?,?> t : result) // Print each (word, count) pair
System.out. println(t._1() + "\t" + t._2());
}

After replacing each line of text with the individual words (using £1atMap), each word is converted
to a (word, 1) pair. The reduceByKey transformation reduces values (word, M) and (word, N)
to (word, M + N). The pipeline ends with collect which saves the remaining pairs into a List.
Finally, the list contents are printed to standard output.

For Storm, we split the pipeline into two bolts which are outlined below:

public class Splitter implements IRichBolt {
// Private variables are initialised in the prepare() method
private OutputCollector collector;

@OQOverride public vold execute(Tuple line) {
Pattern pat = Pattern.compile("\\s+");
for (String word: pat.split(line.getString (0)))
collector.emit(new Values(word)); // Send each word to next bolt
collector.ack(line);

}

//

1 December 2014 Version 1.0 Page 25
Confidentiality: Public Distribution

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

R O R S R

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

}

public class Counter implements IRichBolt {
// Private variables are initialised in the prepare() method
private OutputCollector collector;
private TreeMap<String , Integer> wordcount;

@Override public vold execute(Tuple t) {
String word = t.getString (0);
if (wordcount.containsKey (word))
wordcount. put(word, wordcount.get(word) + 1); // Update occurrence
else
wordcount. put(word, 1); // Add new word
collector .ack(t);

//
}

The bolts can be incorporated into a topology with the following code:

TopologyBuilder builder = new TopologyBuilder ();
builder.setSpout("input", ...);

builder.setBolt("split", new Splitter ()).shuffleGrouping("input");
builder.setBolt("count", new Counter ()). shuffleGrouping("split");
//

When run, the Splitter accepts lines of text and outputs individual words. Concurrently, the
Counter adds each word from the Splitter into a TreeMap or updates its occurrence if already
present. Since Spark topologies run indefinitely, an external signal, special marker or timeout is
needed to indicate the end of input and that the TreeMap is ready to be output.

Page 26 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

8 Initial evaluation

The purpose of this preliminary evaluation is to demonstrate that the extended JUNIPER APIs de-
scribed in this document allow efficient description of both map-reduce and distributed streaming
processing. Direct comparisons of end-to-end execution times for JUNIPER, Spark and Hadoop
are often not appropriate because each system performs different styles of computation, at different
times, and with different data distribution, replication, and fault tolerance guarantees.

Therefore this section attempts to remove initial distribution from the comparison and focus solely
on the computation by pre-distributing the input data. This is how Hadoop (and Spark on HDFS)
works normally, but it is not required by Storm or the JUNIPER Distributed Streams approach.

8.1 Experimental setup

All tests were carried out on a cluster with one master and six compute nodes:

Intel Core 2 Duo E6600 with 2GB RAM (master)
Intel Core 2 Duo E6400 with 2GB RAM

Intel Core 2 Duo E6400 with 4GB RAM

Intel Core 2 Duo E8400 with 8GB RAM

Intel Core 2 Duo E8400 with 4GB RAM x 3

Each node has a single 7200RPM hard disk attached. Linux is installed on the cluster: the master
node runs Ubuntu 12.04 and all compute nodes run Debian 7. All nodes are connected with gigabit
ethernet via a switch.

For Distributed Streams, input data is distributed equally between all compute nodes and resides on
their local filesystems.

For the Hadoop tests, version 1.2.1 is used. Input data is copied to HDFS before computation begins.
The master node acts as the HDFS namenode as well as the jobtracker, while the compute nodes are
each HDFS datanodes and tasktrackers.

For the Spark tests, version 1.1.1 is used, with the same HDFS configuration as above.

8.2 Tests

Execution times for word-count were measured:

e For Distributed Streams, the existing implementation based on Java 8 Streams and Collections
(in section was used.

e For Hadoop, the implementation in the hadoop-examples JAR file (included in standard
Hadoop installations) was used.

e For Spark, the implementation in the spark—-examples JAR file (included in standard Spark
installations) was used.

The input dataset is a text file derived from [[11]] and repeated to give the following sizes:

1 December 2014 Version 1.0 Page 27
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

Input size 45MB 450MB 4.5GB
Library/framework | Time | Std. dev. | Time | Std. dev. | Time | Std. dev.
Distributed Streams | 13.6 | 0.309 203 | 0.278 793 | 1.13
Hadoop 20.7 | 0.497 62.1 | 4.90 248 | 3.06
Spark 19.9 | 0.969 57.0 | 0.879 423 | 148

Table 1: Word-count execution times and standard deviations (in seconds).

e 45MB
e 450MB
e 45GB

30 runs were carried out with each input size. Timing begins after data is distributed to the compute
nodes and ends after the computation results are written to disk. Since only a minimal amount of
data (not more than 8MB) is written to disk, the results are therefore representative of computation
times alone.

8.3 Results and evaluation

Table [Tl shows the mean execution times and standard deviations obtained from the tests described in
section [8.2] Distributed Streams are between 1.4 and 3.1 times faster and are more predictable (they
have smaller standard deviations) than Hadoop or Spark for the input sizes tested. They also scale as
well as Hadoop as input sizes increase.

The results indicate that Distributed Streams are lightweight compared to Hadoop and Spark. This is
evident from execution times of the smallest input dataset, where communication overheads are more
significant. For this dataset, a Distributed Stream job takes at least 6.3 seconds shorter to complete
than a Hadoop or Spark job. Furthermore, it can be seen that even in this stock example the range of
observed execution times is lower with the JUNIPER approach. This is purely because, as a thinner
layer, less unpredictable overhead is introduced. Section [9] discusses how the other facilities of the
JUNIPER approach could then be added to this to further increase predictability.

To reiterate, the purpose of these initial tests is not to demonstrate that the JUNIPER approach is
faster, as this is not directly comparable. The Distributed Streams extension described in this docu-
ment does not provide any fault tolerance above that which is already provided by the underlying MPI
implementation. Instead, these results illustrate that as a thin layer, the JUNIPER API is a suitable
base from which it is possible to efficiently implement many different Big Data processing models.

Since the current implementation of Distributed Streams is a proof-of-concept and not heavily opti-
mised, we believe that there is room for improvements in efficiency and predictability. We are also
confident that performance can be maintained even after reliability issues have been addressed.

Page 28 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

9 Further exploitation of the JUNIPER platform

In this deliverable we have shown how the Distributed Streams API extension allows the program-
ming models of Hadoop, Spark and Storm to be conveniently expressed using the JUNIPER platform.
This is one advantage of using the JUNIPER approach, but to further improve on their applications’
real-time behaviour, programmers can also take advantage of additional features of the JUNIPER
platform.

Locales (described in deliverable D2.1) allow the programmer to better target large-scale ccNUMA
and NUMA servers. Whilst this document has only shown the use of standard pipeline operations,
real-world data processing applications will define their own pipeline stages. For greater real-time
performance these stages can use the JUNIPER hardware APIs and Locales to control thread and
data placement throughout the individual nodes of the cluster.

Another advantage of using Locales is that a Locale can use the JUNIPER API to request disk band-
width reservations. Reservations allow the program to reserve an amount of disk access time for
high priority tasks. This increases the worst-case response time of high priority tasks at the cost of
analysis pessimism in lower-priority tasks. Reservations and response time analysis is discussed in
deliverables D3.2 and D5.5.

The Real-Time Specification for Java is supported by the JUNIPER platform and allows the developer
to express their software in a way which is more amenable to real-time systems. The RTSJ allows
for better static analysis of the input software, and can better control memory usage throughout the
application.

Related to the use of the RTSJ, the JUNIPER system software supports more advanced deadline-

based scheduling policies which can be exploited by the developer. This is discussed in deliverable
D3.1.

1 December 2014 Version 1.0 Page 29
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MIunireER

10 Conclusions

Extending Java 8 Streams to distribute data-parallel computation over a cluster enables Big Data
applications to be written with JUNIPER’s programming API. From the comparisons above, we
believe that the programming model provided by Distributed Streams and augmented with distributed
in-memory and on-disk collections is flexible enough as a base to implement the common Big Data
paradigms. With the use of real-time features in Distributed Stored Collections, for example, such
applications can meet timing requirements in addition to running “fast enough”.

Work is in progress to fully implement Distributed Streams and Distributed Stored Collections, as
well as to optimise their performance. In the future, we plan to address reliability issues such as node
failures and unreliable data sources, and to further quantify the real-time benefits provided by the
JUNIPER approach to such applications.

Page 30 Version 1.0 1 December 2014
Confidentiality: Public Distribution

01NN AW~

—_— = e =
B Lo = OO

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

A Distributed Stream API

This Appendix contains the JavaDoc for the JUNIPER Distributed Stream API extensions and all
related classes.

A.1 DistributedStream

package dstream;

import java.util .x;
import java.util.function .x*;
import java.util.stream.x*;

/% %
« A distributed extension of Java 8 Streams.
x* The associated pipeline is replicated on each participating compute node.
x* @see java.util.stream. Stream
x/
public interface DistributedStream <T> extends Stream<T>
{
VEE:
* Returns the current Distributed Stream’s compute group.
«* This group determines the participating nodes in the computation.
* @return Current Distributed Stream’s compute group.
x/
public ComputeGroup getComputeGroup ();

/% %

* Changes the current Distributed Stream’s compute group.
* @param grp New compute group .

*/

public void setComputeGroup (ComputeGroup grp);

// Data distribution operations

/

*

Sends data elements between nodes in the current compute group
according to a hash—based partitioner.

A stateful eager intermediate operation.

Hash function is the Object.hashCode method.

Elements with the same hash value are sent to the same destination.
Suitable for MapReduce—style shuffling of data.

@return Distributed Stream consisting of all elements.

L .

x/

public DistributedStream <T> distribute ();
VEE:
Sends data elements between nodes in the current compute group
according to the specified partitioner.

A stateful eager intermediate operation.

@param p Programmer—defined partitioner.

¥ ¥ ¥ % ¥

1 December 2014 Version 1.0 Page 31
Confidentiality: Public Distribution

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

* @return Distributed Stream consisting of all elements.

x/

public DistributedStream <T> distribute (Partitioner <? super T> p);

VEx:

x Sends data elements from nodes in the current compute group to
* another compute group according to a hash—based partitioner.

* A stateful eager intermediate operation.

x Suitable for MapReduce—style shuffling of data.

x* @param grp Destination compute group.

x @return Distributed Stream consisting of all elements.

x/

public DistributedStream <T> distribute (ComputeGroup grp);

/% %

x Sends data elements from nodes in the current compute group to
* another compute group according to the specified partitioner.
* A stateful eager intermediate operation.

% @param grp Destination compute group.

% @param p Programmer—defined partitioner.

* @return Distributed Stream consisting of all elements.

x/

public DistributedStream <T> distribute (ComputeGroup grp,
Partitioner <? super T> p);

VEE:

x Sends data elements from nodes in the current compute group to
* the specified node.

x* A stateful eager intermediate operation.

% @param node Destination compute node.

% @return Distributed Stream consisting of all elements.

#/

public DistributedStream <T> distribute (ComputeNode node);

Er:

x Sends data elements from nodes in the current compute group to
x* multiple compute groups according to a hash—based partitioner.
x* A stateful eager intermediate operation.

* @param grps Array of destination compute groups.

% @return Array of Distributed Streams each consisting of all elements.
*/

public DistributedStream <T>[] distribute (ComputeGroup[] grps);

VEE:

x Sends data elements from nodes in the current compute group to
x* multiple compute groups according to the specified partitioner.
* A stateful eager intermediate operation.

x* @param grps Destination compute group .

x @param p Programmer—defined partitioner.

x* @return Array of Distributed Streams each consisting of all elements.
x/

public DistributedStream <T>[] distribute (ComputeGroup[] grps,
Partitioner <? super T> p);

Page 32 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

98

99 // Local operations

100

101 /s %

102 * Accumulates local data elements on each node into a container.
103 x* Equivalent to executing collect() on each local stream.

104 * A terminal operation.

105 * @param collector An operation which includes supplier, accumulator
106 * and combiner functions. @see java. util.stream. Collector

107 * @return The resulting container.

108 x/

109 public <R, A> R localCollect(Collector <? super T, A, R> collector);
110

111 /% %

112 * Accumulates local data elements on each node into a container.
113 * Equivalent to executing collect() on each local stream.

114 x* A terminal operation.

115 % @param supplier Function returning a new container.

116 * @param accumulator Function to add a new element into a container.
117 * @param combiner Function for combining two containers.

118 * @return The resulting container.

119 x/

120 public <R> R localCollect(Supplier<R> supplier ,

121 BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner);
122

123 /s %

124 % Returns the number of data elements in the local stream.

125 * Equivalent to executing count() on each local stream.

126 * A terminal operation.

127 * @return The number of local data elements.

128 x/

129 public long localCount ();

130

131 VEE:

132 * Removes duplicate elements in the local stream.

133 * Equivalent to executing distinct() on each local stream.

134 * An intermediate operation.

135 % @return Distributed Stream without duplicate local data elements.
136 %/

137 public DistributedStream <T> localDistinct ();

138

139 /s %

140 * Executes an action on each local element.

141 * Encounter order is not preserved.

142 * Equivalent to executing forEach() on each local stream.

143 * A terminal operation.

144 * @param action Action to apply on each element. Must be non—interfering.
145 x/

146 public void localForEach (Consumer<? super T> action);

147

148 VEE:

149 x Keeps only the specified number of elements in each local stream.
150 * Equivalent to executing limit() on each local stream.

1 December 2014 Version 1.0 Page 33
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

151 x* An intermediate operation.

152 * @param maxSize Maximum number of elements to keep.

153 % @return Distributed Stream with each local stream

154 % truncated to maxSize elements .

155 %/

156 public DistributedStream <T> localLimit(long maxSize);

157

158 EE

159 % Performs an action on each local element and returns the same
160 * Distributed Stream.

161 x* Equivalent to executing peek() on each local stream.

162 x* An intermediate operation.

163 % @param action A non—interfering action.

164 % @return The same Distributed Stream.

165 %/

166 public DistributedStream <T> localPeek (Consumer<? super T> action);
167

168 VEE

169 * Accumulates local elements into a single value of the same type.
170 x* Equivalent to executing reduce() on each local stream.

171 * A terminal operation.

172 x @param accumulator Associative accumulating function.

173 x* @return An Optional of either the reduced value or an empty value.
174 %/

175 public Optional <T> localReduce (BinaryOperator <T> accumulator);

176

177 /%%

178 x* Accumulates local elements into a single value of the same type.
179 * Equivalent to executing reduce() on each local stream.

180 %« A terminal operation.

181 % @param identity The accumulating function’s identity value.

182 % @param accumulator Associative accumulating function.

183 * @return The reduced value.

184 %/

185 public T localReduce (T identity , BinaryOperator <T> accumulator);
186

187 /% %

188 x* Accumulates local elements into a single value.

189 * Equivalent to executing reduce() on each local stream.

190 %« A terminal operation.

191 % @param identity The accumulating function’s identity value.

192 ¥ @param accumulator Function to accumulate elements into the value.
193 x @param combiner Function to combine two values.

194 * @return The reduced value.

195 %/

196 public <U> U localReduce (U identity ,

197 BiFunction<U, ? super T, U> accumulator, BinaryOperator <U> combiner);
198

199 /

k sk
200 * Removes the first n elements in each local stream.
201 %+ Equivalent to executing skip() on each local stream.
202 * An intermediate operation.

203 * @param n Number of local elements to skip.

Page 34 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

204 % @return Distributed Stream with the elements removed.

205 %/

206 public DistributedStream <T> localSkip (long n);

207

208 VEE:

209 « Sorts all elements in each local stream.

210 * Equivalent to executing sorted() on each local stream.

211 * An intermediate operation.

212 * @return Distributed Stream with the elements locally sorted.
213 x/

214 public DistributedStream <T> localSorted ();

215

216 /% %

217 * Sorts all elements in each local stream using the specified comparator.
218 * Equivalent to executing sorted() on each local stream.

219 * An intermediate operation.

220 * @param comparator Function to compare two values.

221 * @return Distributed Stream with the elements locally sorted.
222 4

223 public DistributedStream <T> localSorted (Comparator<? super T> comparator);
224

225 VEE:

226 x* Collects all local elements into an array.

227 * Equivalent to executing toArray() on each local stream.

228 * A terminal operation.

229 % @return Array containing all local elements.

230 x/

231 public Object[] localToArray ();

232

233 VEE:

234 x Collects all local elements into an array.

235 * FEquivalent to executing toArray() on each local stream.

236 x* A terminal operation.

237 * @param generator Array allocation function.

238 * @return Array containing all local elements.

239 %/

240 public <A> A[] localToArray (IntFunction <A[]> generator);

241

242 // Overrides

243

244 /% %

245 * Removes duplicate elements in the Distributed Stream.

246 x* A stateful eager intermediate operation.

247 % @return Distributed Stream without duplicate data elements.
248 %/

249 @Qverride public DistributedStream <T> distinct ();

250

251 VEE:

252 * Removes elements in the Distributed Stream that do not satisfy the
253 * specified predicate.

254 * An intermediate operation.

255 * @param predicate Boolean function that decides whether an element
256 % should remain in the Distributed Stream.

1 December 2014 Version 1.0 Page 35
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

257 % @return Distributed Stream where all elements satisfy the predicate.
258 %/
259 @Override public DistributedStream <T> filter (
260 Predicate <? super T> predicate);
261
262 VR
263 x* Replaces each element of the Distributed Stream with elements in the
264 % stream returned by the specified mapping function.
265 * An intermediate operation.
266 * @param mapper Mapping function returning a Sstream.
267 * @return Distributed Stream with the applied mapping.
268 %/
269 @Override public <R> DistributedStream <R> flatMap (
270 Function <? super T,? extends Stream<? extends R>> mapper);
271
272 /% %
273 x* Replaces each element of the Distributed Stream with elements in the
274 x stream returned by the specified mapping function.
275 * An intermediate operation.
276 x @param mapper Mapping function returning a stream of doubles.
277 * @return Distributed DoubleStream with the applied mapping.
278 %/
279 @Override public DistributedDoubleStream flatMapToDouble (
280 Function <? super T,? extends DoubleStream> mapper);
281
282 /% %
283 * Replaces each element of the Distributed Stream with elements in the
284 x stream returned by the specified mapping function.
285 * An intermediate operation.
286 % @param mapper Mapping function returning a stream of integers.
287 % @return Distributed IntStream with the applied mapping.
288 %/
289 @Override public DistributedIntStream flatMapTolnt(
290 Function <? super T,? extends IntStream> mapper);
291
292 /% %
293 x* Replaces each element of the Distributed Stream with elements in the
294 x stream returned by the specified mapping function.
295 * An intermediate operation.
296 % @param mapper Mapping function returning a stream of long integers.
297 % @return Distributed LongStream with the applied mapping.
298 %/
299 @Override public DistributedLongStream flatMapToLong(
300 Function <? super T,? extends LongStream> mapper);
301
302 /% %
303 x Keeps only the specified number of elements in the Distributed Stream.
304 x An intermediate operation.
305 x @param maxSize Maximum number of elements to keep.
306 ¥ @return Distributed Stream truncated to maxSize elements.
307 %/
308 @Override public DistributedStream <T> limit(long maxSize);
309
Page 36 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

310 VEE:
311 * Replaces each element of the Distributed Stream with values from the
312 * specified mapping function.
313 * An intermediate operation.
314 * @param mapper Mapping function returning values of an arbitrary type.
315 % @return Distributed Stream with the applied mapping.
316 %/
317 @Override public <R> DistributedStream <R> map(
318 Function <? super T,? extends R> mapper);
319
320 VEY:
321 * Replaces each element of the Distributed Stream with values from the
322 * specified mapping function.
323 * An intermediate operation.
324 * @param mapper Mapping function returning values of type double.
325 % @return Distributed Stream with the applied mapping.
326 %/
327 @OQOverride public DistributedDoubleStream mapToDouble (
328 ToDoubleFunction <? super T> mapper);
329
330 VAT
331 * Replaces each element of the Distributed Stream with values from the
332 * specified mapping function.
333 * An intermediate operation.
334 * @param mapper Mapping function returning values of type integer.
335 * @return Distributed Stream with the applied mapping.
336 %/
337 @Override public DistributedIntStream mapTolnt(
338 ToIntFunction <? super T> mapper);
339
340 /s %
341 * Replaces each element of the Distributed Stream with values from the
342 * specified mapping function.
343 * An intermediate operation.
344 * @param mapper Mapping function returning values of type long integer.
345 * @return Distributed Stream with the applied mapping.
346 x/
347 @Override public DistributedLongStream mapToLong(
348 ToLongFunction <? super T> mapper);
349
350 VEE:
351 * Returns a parallel Distributed Stream with an otherwise identical state.
352 %+ An intermediate operation.
353 * @return A parallel Distributed Stream.
354 %/
355 @OQverride public DistributedStream <T> parallel ();
356
357 VEY:
358 * Performs an action on each element on all nodes and returns the same
359 # Distributed Stream.
360 * An intermediate operation.
361 * @param action A non—interfering action.
362 % @return The same Distributed Stream.
1 December 2014 Version 1.0 Page 37

Confidentiality: Public Distribution

363
364
365
366
367
368
369
370
371
372
373
374
375
376
371
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

0NN N kW -

— e e =
DN bW = O 0

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

x/
@QOverride public DistributedStream <T> peek (Consumer<? super T> action);

VEE:

* Returns a sequential Distributed Stream with an otherwise identical
* state.

* An intermediate operation.

% @return A sequential Distributed Stream.

*/

@Override public DistributedStream <T> sequential ();

EE:

* Removes the first n elements in the Distributed Stream.
x* A stateful eager intermediate operation.

x @param n Number of local elements to skip.

* @return Distributed Stream with the elements removed.
x/

@Override public DistributedStream <T> skip (long n);

/% %

x Sorts all elements in the Distributed Stream.

x* A stateful eager intermediate operation.

% @return Distributed Stream with the elements sorted.
*/

@Override public DistributedStream <T> sorted ();

VEE:

x Sorts all elements in the Distributed Stream using the specified

x comparator.

x* A stateful eager intermediate operation.

* @param comparator Function to compare two values.

* @return Distributed Stream with the elements locally sorted.

x/

@Override public DistributedStream <T> sorted (Comparator<? super T> comparator);

A.2 DistributedDoubleStream

package dstream;

import java.util .x;
import java.util.function.=x;
import java.util.stream.s=;

EE:
x* A distributed extension of Java 8 Streams for double primitive type.
x* The associated pipeline is replicated on each participating compute node.
* @see java.util.stream.DoubleStream
%/
public interface DistributedDoubleStream extends DoubleStream
{
/% %
% Returns the current Distributed Stream’s compute group.

Page 38 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

16 « This group determines the participating nodes in the computation.
17 % @return Current Distributed Stream’s compute group.

18 %/

19 public ComputeGroup getComputeGroup ();

20

21 VEE:

22 x Changes the current Distributed Stream’s compute group.

23 % @param grp New compute group .

24 %/

25 public void setComputeGroup (ComputeGroup grp);

26

27 // Data distribution operations

28 VEE:

29 * Sends data elements between nodes in the current compute group
30 * according to a hash—based partitioner.

31 x* A stateful eager intermediate operation.

32 * Hash function is the Object.hashCode method.

33 « Elements with the same hash value are sent to the same destination.
34 * Suitable for MapReduce—style shuffling of data.

35 * @return DistributedDoubleStream consisting of all elements.

36 %/

37 public DistributedDoubleStream distribute ();

38

39 VEE:

40 Sends data elements between nodes in the current compute group

*
41 % according to the specified partitioner.

42 x* A stateful eager intermediate operation.

43 % @param p Programmer—defined partitioner.

44 % @return DistributedDoubleStream consisting of all elements.
45 %/

46 public DistributedDoubleStream distribute (DoublePartitioner p);
47

48 VEE:

49 x Sends data elements from nodes in the current compute group to
50 % another compute group according to a hash—based partitioner.
51 * A stateful eager intermediate operation.

52 * Suitable for MapReduce—style shuffling of data.

53 % @param grp Destination compute group .

54 % @return DistributedDoubleStream consisting of all elements.

55 %/

56 public DistributedDoubleStream distribute (ComputeGroup grp);
57

58 VEY:
59 x Sends data elements from nodes in the current compute group to
60 % another compute group according to the specified partitioner.
61 * A stateful eager intermediate operation.
62 * @param grp Destination compute group.
63 % @param p Programmer—defined partitioner.
64 % @return DistributedDoubleStream consisting of all elements.
65 %/
66 public DistributedDoubleStream distribute (
67 ComputeGroup grp, DoublePartitioner p);
68
1 December 2014 Version 1.0 Page 39

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

69 VR

70 * Sends data elements from nodes in the current compute group to
71 % the specified node.

72 * A stateful eager intermediate operation.

73 * @param node Destination compute node.

74 % @return DistributedDoubleStream consisting of all elements.

75 %/

76 public DistributedDoubleStream distribute (ComputeNode node);
77

78 /% %

79 x Sends data elements from nodes in the current compute group to

80 x* multiple compute groups according to a hash—based partitioner.

81 * A stateful eager intermediate operation.

82 * @param grps Array of destination compute groups.

83 % @return Array of DistributedDoubleStreams each consisting of all elements.
84 %/

85 public DistributedDoubleStream [] distribute (ComputeGroup[] grps);
86

87 /%
88 x Sends data elements from nodes in the current compute group to
89 x* multiple compute groups according to the specified partitioner.
90 x* A stateful eager intermediate operation.
91 * @param grps Destination compute group .
92 % @param p Programmer—defined partitioner.
93 % @return Array of DistributedDoubleStreams each consisting of all elements.
94 %/
95 public DistributedDoubleStream [] distribute (ComputeGroup[] grps,
96 DoublePartitioner p);
97
98 // Local operations
99
100 /% %
101 * Returns the mean of all local data elements.
102 x* Equivalent to executing average() on each local stream.
103 %« A terminal operation.
104 % @return The mean of local data elements, or empty if no elements.
105 %/
106 public OptionalDouble localAverage ();
107
108 /o %
109 * Accumulates local data elements on each node into a container.
110 * Equivalent to executing collect() on each local stream.
111 * A terminal operation.
112 x @param supplier Function returning a new container.
113 % @param accumulator Function to add a new element into a container.
114 % @param combiner Function for combining two containers.
115 % @return The resulting container.
116 %/
117 public <R> R localCollect(Supplier<R> supplier ,
118 ObjDoubleConsumer<R> accumulator , BiConsumer<R, R> combiner);
119
120 /% %
121 * Returns the number of data elements in the local stream.
Page 40 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

122 * Equivalent to executing count() on each local stream.

123 * A terminal operation.

124 * @return The number of local data elements.

125 %/

126 public long localCount ();

127

128 VEE:

129 * Removes duplicate elements in the local stream.

130 * Equivalent to executing distinct() on each local stream.

131 * An intermediate operation.

132 % @return DistributedDoubleStream without duplicate local data elements.
133 %/

134 public DistributedDoubleStream localDistinct ();

135

136 /s %

137 x Keeps only the specified number of elements in each local stream.
138 * Equivalent to executing limit() on each local stream.

139 * An intermediate operation.

140 % @param maxSize Maximum number of elements to keep.

141 #* @return DistributedDoubleStream with each local stream

142 % truncated to maxSize elements.

143 x/

144 public DistributedDoubleStream localLimit(long maxSize);

145

146 /% %

147 * Returns the largest encountered value of a local data element.
148 x* Equivalent to executing max() on each local stream.

149 x* A terminal operation.

150 * @return The largest local data element, or empty if no elements.
151 %/

152 public OptionalDouble localMax ();

153

154 VEE:

155 * Returns the smallest encountered value of a local data element.
156 * Equivalent to executing min() on each local stream.

157 * A terminal operation.

158 * @return The smallest local data element, or empty if no elements.
159 %/

160 public OptionalDouble localMin ();

161

162 /% %

163 * Performs an action on each local element and returns the same
164 # DistributedDoubleStream .

165 * Equivalent to executing peek() on each local stream.

166 * An intermediate operation.

167 % @param action A non—interfering action.

168 % @return The same DistributedDoubleStream .

169 %/

170 public DistributedDoubleStream localPeek (DoubleConsumer action);
171

172 VEE:

173 * Accumulates local elements into a single value of the same type.
174 * Equivalent to executing reduce() on each local stream.

1 December 2014 Version 1.0 Page 41
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

175 x* A terminal operation.

176 * @param op Associative accumulating function.

177 % @return Either the reduced value or an empty value if no elements.
178 %/

179 public OptionalDouble localReduce(DoubleBinaryOperator op);
180

181 VEE
182 Accumulates local elements into a single value of the same type.
183 Equivalent to executing reduce() on each local stream.

185 @param identity The accumulating function’s identity value.

186 @param op Associative accumulating function.

187 @return The reduced value.

188 %/

189 public double localReduce (double identity , DoubleBinaryOperator op);
190

*
*
ES

184 * A terminal operation.
*
*
*

191 /% %
192 * Removes the first n elements in each local stream.
193 x* Equivalent to executing skip() on each local stream.
194 * An intermediate operation.
195 * @param n Number of local elements to skip.
196 * @return DistributedDoubleStream with the elements removed.
197 %/
198 public DistributedDoubleStream localSkip (long n);
199
200 /%
201 x Sorts all elements in each local stream.
202 x* Equivalent to executing sorted() on each local stream.
203 * An intermediate operation.
204 % @return DistributedDoubleStream with the elements locally sorted.
205 %/
206 public DistributedDoubleStream localSorted ();
207
208 VEE
209 % Returns the sum of all elements in each local stream.
210 * Equivalent to executing sum() on each local stream.
211 * A terminal operation.
212 x* @return Sum of local elements.
213 %/
214 public double localSum ();
215
216 /%
217 % Returns statistics (average, sum, etc.) for each local stream.
218 x* Equivalent to executing summaryStatistics () on each local stream.
219 * A terminal operation.
220 % @return DoubleSummaryStatistics containing statistics about each
221 % local stream.
222 %/
223 public DoubleSummaryStatistics localSummaryStatistics ();
224
225 /% %
226 % Collects all local elements into an array.
227 x* Equivalent to executing toArray() on each local stream.
Page 42 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

228 x* A terminal operation.

229 % @return Array containing all local elements.

230 %/

231 public double[] localToArray ();

232

233 // Overrides

234

235 VEE:

236 x* Converts each element into a Double object.

237 * An intermediate operation.

238 % @return Distributed Stream of converted elements.

239 %/

240 public DistributedStream <Double> boxed ();

241

242 VEE

243 # Removes duplicate elements in the DistributedDoubleStream.

244 * A stateful eager intermediate operation.

245 * @return DistributedDoubleStream without duplicate data elements.
246 4

247 public DistributedDoubleStream distinct ();

248

249 /% %

250 * Removes elements in the DistributedDoubleStream that do not satisfy the
251 * specified predicate.

252 * An intermediate operation.

253 * @param predicate Boolean function that decides whether an element
254 % should remain in the Distributed Stream.

255 * @return DistributedDoubleStream where all elements satisfy the predicate.
256 %/

257 public DistributedDoubleStream filter (DoublePredicate predicate);
258

259 /%
260 % Replaces each element of the DistributedDoubleStream with elements in the
261 « stream returned by the specified mapping function.
262 * An intermediate operation.
263 * @param mapper Mapping function returning a stream.
264 % @return DistributedDoubleStream with the applied mapping.
265 %/
266 public DistributedDoubleStream flatMap (
267 DoubleFunction <? extends DoubleStream> mapper);
268
269 /s %
270 « Keeps only the specified number of elements in the DistributedDoubleStream.
271 * An intermediate operation.
272 * @param maxSize Maximum number of elements to keep.
273 * @return DistributedDoubleStream truncated to maxSize elements .
274 x/
275 public DistributedDoubleStream limit(long maxSize);
276
277 VEE:
278 % Replaces each element of the DistributedDoubleStream with values from the
279 * specified mapping function.
280 * An intermediate operation.
1 December 2014 Version 1.0 Page 43

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

281 x @param mapper Mapping function returning values of type integer.
282 * @return DistributedDoubleStream with the applied mapping.
283 %/

284 public DistributedDoubleStream map(DoubleUnaryOperator mapper);
285

286 VR

287 * Replaces each element of the DistributedDoubleStream with values from the
288 * specified mapping function.

289 * An intermediate operation.

290 x @param mapper Mapping function returning values of type long integer.

291 * @return DistributedIntStream with the applied mapping.

292 %/

293 public DistributedIntStream mapTolnt(DoubleToIntFunction mapper);

294

295 /% %

296 * Replaces each element of the DistributedDoubleStream with values from the
297 x* specified mapping function.

298 * An intermediate operation.

299 x @param mapper Mapping function returning values of type long integer.

300 % @return DistributedLongStream with the applied mapping.

301 %/

302 public DistributedLongStream mapToLong(DoubleToLongFunction mapper);
303

304 EE

305 %+ Replaces each element of the DistributedDoubleStream with values from the
306 * specified mapping function.

307 x* An intermediate operation.

308 x @param mapper Mapping function returning values of an arbitrary type.

309 * @return Distributed Stream with the applied mapping.

310 %/

311 public <U> DistributedStream <U> mapToObj(DoubleFunction <? extends U> mapper);
312

313 EE

314 * Returns a parallel DistributedDoubleStream with an otherwise identical
315 % state.

316 * An intermediate operation.

317 * @return A parallel DistributedDoubleStream.

318 %/

319 public DistributedDoubleStream parallel ();

320

321 /%%

322 x Performs an action on each element on all nodes and returns the same
323 * DistributedDoubleStream .

324 x* An intermediate operation.

325 * @param action A non—interfering action.

326 % @return The same DistributedDoubleStream .

327 %/

328 public DistributedDoubleStream peek(DoubleConsumer action);
329

330 /% %
331 % Returns a sequential DistributedDoubleStream with an otherwise identical
332 % state.
333 * An intermediate operation.
Page 44 Version 1.0 1 December 2014

Confidentiality: Public Distribution

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

0NN AW~

—_ = =
B W= OO

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

MIunipEr

D3.7 — Hadoop with Real-Time Enhancements

% @return A sequential DistributedDoubleStream.

*/

public DistributedDoubleStream sequential ();

VEE:

* Removes the first n elements in the DistributedDoubleStream.
* A stateful eager intermediate operation.

* @param n Number of local elements to skip.

% @return DistributedDoubleStream with the elements removed.

%/

public DistributedDoubleStream skip(long n);

VEX:
* Sorts all

elements in the DistributedDoubleStream.

* A stateful eager intermediate operation.
* @return DistributedDoubleStream with the elements sorted.

*/

public DistributedDoubleStream sorted ();

A.3 DistributedIntStream

package dstream;

import java.util .x;
import java.util.function.=x;
import java.util.stream.x;

VEE:

x* A distributed extension of Java 8 Streams for int primitive type.
%+ The associated pipeline is replicated on each participating compute node.
% @see java.util.stream.IntStream

x/

public interface DistributedIntStream extends IntStream

{
/% %

* Returns the current Distributed Stream’s compute group.
x* This group determines the participating nodes in the computation.
% @return Current Distributed Stream’s compute group.

*/

public ComputeGroup getComputeGroup ();

/% %

Changes the current Distributed Stream’s compute group .
% @param grp New compute group .

*/

public void setComputeGroup (ComputeGroup grp);

// Data distribution operations

/% %

* Sends data elements between nodes in the current compute group

* according

to a hash—based partitioner.

1 December 2014

Version 1.0
Confidentiality: Public Distribution

Page 45

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84

D3.7 — Hadoop with Real-Time Enhancements

MIunipeEr

Confidentiality: Public Distribution

x* A stateful eager intermediate operation.
* Hash function is the Object.hashCode method.
% Elements with the same hash value are sent to the same destination.
x Suitable for MapReduce—style shuffling of data.
* @return DistributedIntStream consisting of all elements.
x/
public DistributedIntStream distribute ();
VEE:
x Sends data elements between nodes in the current compute group
x according to the specified partitioner.
* A stateful eager intermediate operation.
% @param p Programmer—defined partitioner.
% @return DistributedIntStream consisting of all elements.
#/
public DistributedIntStream distribute (IntPartitioner p);
/% %
x Sends data elements from nodes in the current compute group to
% another compute group according to a hash—based partitioner.
x* A stateful eager intermediate operation.
x Suitable for MapReduce—style shuffling of data.
* @param grp Destination compute group .
% @return DistributedIntStream consisting of all elements.
#/
public DistributedIntStream distribute (ComputeGroup grp);
EE:
% Sends data elements from nodes in the current compute group to
% another compute group according to the specified partitioner.
* A stateful eager intermediate operation.
* @param grp Destination compute group.
* @param p Programmer—defined partitioner.
* @return DistributedIntStream consisting of all elements.
x/
public DistributedIntStream distribute (ComputeGroup grp, IntPartitioner p);
VEE:
x Sends data elements from nodes in the current compute group to
% the specified node.
* A stateful eager intermediate operation.
% @param node Destination compute node.
* @return DistributedIntStream consisting of all elements.
x/
public DistributedIntStream distribute (ComputeNode node);
VEES
x* Sends data elements from nodes in the current compute group to
x* multiple compute groups according to a hash—based partitioner.
* A stateful eager intermediate operation.
* @param grps Array of destination compute groups.
% @return Array of DistributedIntStreams each consisting of all elements.
#/
Page 46 Version 1.0 1 December 2014

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

85 public DistributedIntStream [] distribute (ComputeGroup[] grps);
86

87 VEE:

88 * Sends data elements from nodes in the current compute group to
89 « multiple compute groups according to the specified partitioner.
90 * A stateful eager intermediate operation.

91 % @param grps Destination compute group.

92 * @param p Programmer—defined partitioner.

93 * @return Array of DistributedIntStreams each consisting of all elements.
94 %/

95 public DistributedIntStream [] distribute (

96 ComputeGroup [] grps, IntPartitioner p);

97

98 // Local operations

99

100 VEE:

101 % Returns the mean of all local data elements.

102 * Equivalent to executing average() on each local stream.

103 * A terminal operation.

104 * @return The mean of local data elements, or empty if no elements.
105 x/

106 public OptionalDouble localAverage ();

107

108 VEE:

109 #* Accumulates local data elements on each node into a container.
110 * Equivalent to executing collect() on each local stream.

111 x* A terminal operation.

112 * @param supplier Function returning a new container.

113 x @param accumulator Function to add a new element into a container.
114 * @param combiner Function for combining two containers.

115 % @return The resulting container.

116 %/

117 public <R> R localCollect(Supplier<R> supplier ,

118 ObjIntConsumer <R> accumulator, BiConsumer<R, R> combiner);

119

120 /% %

121 % Returns the number of data elements in the local stream.

122 x* Equivalent to executing count() on each local stream.

123 x* A terminal operation.

124 * @return The number of local data elements.

125 %/

126 public long localCount ();

127

128 VEE:

129 * Removes duplicate elements in the local stream.

130 * Equivalent to executing distinct() on each local stream.

131 * An intermediate operation.

132 % @return DistributedIntStream without duplicate local data elements.
133 %/

134 public DistributedIntStream localDistinct ();

135

136 /s %

137 x+ Keeps only the specified number of elements in each local stream.

1 December 2014 Version 1.0 Page 47
Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

138 x* Equivalent to executing limit() on each local stream.

139 * An intermediate operation.

140 % @param maxSize Maximum number of elements to keep.

141 % @return DistributedIntStream with each local stream

142 % truncated to maxSize elements.

143 %/

144 public DistributedIntStream localLimit(long maxSize);

145

146 /% %

147 * Returns the largest encountered value of a local data element.
148 x* Equivalent to executing max() on each local stream.

149 x* A terminal operation.

150 %« @return The largest local data element, or empty if no elements.
151 %/

152 public Optionallnt localMax ();

153

154 VR

155 * Returns the smallest encountered value of a local data element.
156 * Equivalent to executing min() on each local stream.

157 %+ A terminal operation.

158 x* @return The smallest local data element, or empty if no elements.
159 %/

160 public Optionallnt localMin ();

161

162 /% %

163 x* Performs an action on each local element and returns the same
164 * DistributedIntStream.

165 x* Equivalent to executing peek() on each local stream.

166 * An intermediate operation.

167 % @param action A non—interfering action.

168 %« @return The same DistributedIntStream .

169 %/

170 public DistributedIntStream localPeek (IntConsumer action);

171

172 /% %

173 x* Accumulates local elements into a single value of the same type.
174 x* Equivalent to executing reduce() on each local stream.

175 x* A terminal operation.

176 * @param op Associative accumulating function.

177 %« @return Either the reduced value or an empty value if no elements.
178 %/

179 public Optionallnt localReduce(IntBinaryOperator op);

180

181 VEE

182 x* Accumulates local elements into a single value of the same type.
183 x* Equivalent to executing reduce() on each local stream.

184 %+ A terminal operation.

185 x @param identity The accumulating function’s identity value.

186 * @param op Associative accumulating function.

187 * @return The reduced value.

188 %/

189 public int localReduce(int identity , IntBinaryOperator op);
190

Page 48 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

191 /% %
192 * Removes the first n elements in each local stream.
193 * Equivalent to executing skip() on each local stream.
194 * An intermediate operation.
195 * @param n Number of local elements to skip.
196 % @return DistributedIntStream with the elements removed.
197 %/
198 public DistributedIntStream localSkip(long n);
199
200 /s %
201 « Sorts all elements in each local stream.
202 * Equivalent to executing sorted() on each local stream.
203 * An intermediate operation.
204 * @return DistributedIntStream with the elements locally sorted.
205 x/
206 public DistributedIntStream localSorted ();
207
208 VEE:
209 % Returns the sum of all elements in each local stream.
210 * Equivalent to executing sum() on each local stream.
211 * A terminal operation.
212 x* @return Sum of local elements.
213 %/
214 public int localSum ();
215
216 /s %
217 % Returns statistics (average, sum, etc.) for each local stream.
218 * Equivalent to executing summaryStatistics () on each local stream.
219 * A terminal operation.
220 * @return IntSummaryStatistics containing statistics about each
221 * local stream.
222 x/
223 public IntSummaryStatistics localSummaryStatistics ();
224
225 /% %
226 x* Collects all local elements into an array.
227 * Equivalent to executing toArray() on each local stream.
228 x* A terminal operation.
229 % @return Array containing all local elements.
230 %/
231 public int[] localToArray ();
232
233 // Overrides
234
235 VEE:
236 # Converts each element into a double.
237 * An intermediate operation.
238 #* @return DistributedDoubleStream of converted elements.
239 %/
240 public DistributedDoubleStream asDoubleStream ();
241
242 VEE
243 x Converts each element into a long integer.
1 December 2014 Version 1.0 Page 49

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

244 x* An intermediate operation.

245 * @return DistributedLongStream of converted elements.

246 %/

247 public DistributedLongStream asLongStream ();

248

249 EE

250 x* Converts each element into an Integer object.

251 * An intermediate operation.

252 % @return Distributed Stream of converted elements.

253 %/

254 public DistributedStream <Integer> boxed ();

255

256 /% %

257 % Removes duplicate elements in the DistributedIntStream.

258 x* A stateful eager intermediate operation.

259 * @return DistributedIntStream without duplicate data elements.

260 %/

261 public DistributedIntStream distinct ();

262

263 /% %

264 x* Removes elements in the DistributedIntStream that do not satisfy the
265 x* specified predicate.

266 * An intermediate operation.

267 % @param predicate Boolean function that decides whether an element
268 % should remain in the Distributed Stream.

269 * @return DistributedIntStream where all elements satisfy the predicate.
270 %/

271 public DistributedIntStream filter (IntPredicate predicate);

272

273 EE

274 * Replaces each element of the DistributedIntStream with elements in the
275 x stream returned by the specified mapping function.

276 x* An intermediate operation.

277 * @param mapper Mapping function returning a stream.

278 % @return DistributedIntStream with the applied mapping.

279 %/

280 public DistributedIntStream flatMap(IntFunction <? extends IntStream> mapper);
281

282 EE

283 « Keeps only the specified number of elements in the DistributedIntStream.
284 * An intermediate operation.

285 * @param maxSize Maximum number of elements to keep.

286 * @return DistributedIntStream truncated to maxSize elements.

287 %/

288 public DistributedIntStream limit(long maxSize);

289

290 /% %

291 x* Replaces each element of the DistributedIntStream with values from the
292 x* specified mapping function.

293 * An intermediate operation.

294 % @param mapper Mapping function returning values of type integer.

295 % @return DistributedIntStream with the applied mapping.

296 %/

Page 50 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

297 public DistributedIntStream map(IntUnaryOperator mapper);

298

299 VEE:

300 * Replaces each element of the DistributedIntStream with values from the
301 * specified mapping function.

302 * An intermediate operation.

303 * @param mapper Mapping function returning values of type double.

304 % @return DistributedDoubleStream with the applied mapping.

305 %/

306 public DistributedDoubleStream mapToDouble(IntToDoubleFunction mapper);
307

308 VEY:

309 * Replaces each element of the DistributedIntStream with values from the
310 * specified mapping function.

311 * An intermediate operation.

312 x @param mapper Mapping function returning values of type long integer.
313 % @return DistributedLongStream with the applied mapping.

314 %/

315 public DistributedLongStream mapToLong(IntToLongFunction mapper);
316

317 VAT

318 * Replaces each element of the DistributedIntStream with values from the
319 * specified mapping function.

320 * An intermediate operation.

321 * @param mapper Mapping function returning values of an arbitrary type.
322 * @return Distributed Stream with the applied mapping.

323 x/

324 public <U> DistributedStream <U> mapToObj(IntFunction <? extends U> mapper);
325

326 VEE:

327 #* Returns a parallel DistributedIntStream with an otherwise identical
328 * State.

329 * An intermediate operation.

330 * @return A parallel DistributedIntStream.

331 %/

332 public DistributedIntStream parallel ();

333

334 VEY:

335 « Performs an action on each element on all nodes and returns the same
336 # DistributedIntStream .

337 * An intermediate operation.

338 % @param action A non—interfering action.

339 % @return The same DistributedIntStream.

340 %/

341 public DistributedIntStream peek(IntConsumer action);

342

343 /s %

344 * Returns a sequential DistributedIntStream with an otherwise identical
345 % Sstate.

346 * An intermediate operation.

347 * @return A sequential DistributedIntStream.

348 %/

349 public DistributedIntStream sequential ();

1 December 2014 Version 1.0 Page 51
Confidentiality: Public Distribution

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

01NN Bk W

— = =
W= OO

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

D3.7 — Hadoop with Real-Time Enhancements

MIunipeEr

/%%
* Removes

the first n elements in the DistributedIntStream.

* A stateful eager intermediate operation.

* @param n

Number of local elements to skip.

x* @return DistributedIntStream with the elements removed.

*/

public DistributedIntStream skip(long n);

/% %

x* Sorts all elements in the DistributedIntStream.
* A stateful eager intermediate operation.
% @return DistributedIntStream with the elements sorted.

*/

public DistributedIntStream sorted ();

A4 DistributedLongStream

package dstream;

import java.util .x;
import java.util.function .x;
import java.util.stream.x;

/% %

x* A distributed extension of Java 8 Streams for long primitive type.
% The associated pipeline is replicated on each participating compute node.

* @see java.
#/

util . stream . LongStream

public interface DistributedLongStream extends LongStream

{
/% %
% Returns

the current Distributed Stream’s compute group.

x This group determines the participating nodes in the computation.

% @return
#/

Current Distributed Stream’s compute group.

public ComputeGroup getComputeGroup ();

/% %
x Changes

the current Distributed Stream’s compute group.

* @param grp New compute group.

#/
public void

setComputeGroup (ComputeGroup grp);

// Data distribution operations

VEES
* Sends data elements between nodes in the current compute group
x according to a hash—based partitioner.
* A stateful eager intermediate operation.
« Hash function is the Object.hashCode method.
% Elements with the same hash value are sent to the same destination.
Page 52 Version 1.0 1 December 2014

Confidentiality: Public Distribution

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

MIunipEr

D3.7 — Hadoop with Real-Time Enhancements

« Suitable for MapReduce—style shuffling of data.

% @return DistributedLongStream consisting of all elements.
x/

public DistributedLongStream distribute ();

VEE:

* Sends data elements between nodes in the current compute group
% according to the specified partitioner.

* A stateful eager intermediate operation.

* @param p Programmer—defined partitioner.

% @return DistributedLongStream consisting of all elements.

x/

public DistributedLongStream distribute(LongPartitioner p);

/% %

* Sends data elements from nodes in the current compute group to
% another compute group according to a hash—based partitioner.

* A stateful eager intermediate operation.

* Suitable for MapReduce—style shuffling of data.

* @param grp Destination compute group.

* @return DistributedLongStream consisting of all elements.

x/

public DistributedLongStream distribute (ComputeGroup grp);

VEE

* Sends data elements from nodes in the current compute group to
% another compute group according to the specified partitioner.
* A stateful eager intermediate operation.

% @param grp Destination compute group.

* @param p Programmer—defined partitioner.

#* @return DistributedLongStream consisting of all elements.

*/

public DistributedLongStream distribute (
ComputeGroup grp, LongPartitioner p);

/% %

x Sends data elements from nodes in the current compute group to

% the specified node.

* A stateful eager intermediate operation.

% @param node Destination compute node.

% @return DistributedLongStream consisting of all elements.

x/

public DistributedLongStream distribute (ComputeNode node);

Confidentiality: Public Distribution

/% %
* Sends data elements from nodes in the current compute group to
* multiple compute groups according to a hash—based partitioner.
x* A stateful eager intermediate operation.
% @param grps Array of destination compute groups.
* @return Array of DistributedLongStreams each consisting of all elements.
x/
public DistributedLongStream[] distribute (ComputeGroup[] grps);
1 December 2014 Version 1.0 Page 53

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

88 VR
89 * Sends data elements from nodes in the current compute group to
90 « multiple compute groups according to the specified partitioner.
91 x* A stateful eager intermediate operation.
92 x* @param grps Destination compute group .
93 x @param p Programmer—defined partitioner.
94 * @return Array of DistributedLongStreams each consisting of all elements.
95 %/
96 public DistributedLongStream [] distribute (
97 ComputeGroup[] grps, LongPartitioner p);
98
99 // Local operations
100
101 /% %
102 % Returns the mean of all local data elements.
103 * Equivalent to executing average() on each local stream.
104 x* A terminal operation.
105 * @return The mean of local data elements, or empty if no elements.
106 %/
107 public OptionalDouble localAverage ();
108
109 T
110 * Accumulates local data elements on each node into a container.
111 « Equivalent to executing collect() on each local stream.
112 x* A terminal operation.
113 x @param supplier Function returning a new container.
114 x @param accumulator Function to add a new element into a container.
115 * @param combiner Function for combining two containers.
116 %« @return The resulting container.
117 %/
118 public <R> R localCollect(Supplier<R> supplier,
119 ObjLongConsumer<R> accumulator , BiConsumer<R, R> combiner);
120
121 VEX]
122 % Returns the number of data elements in the local stream.
123 * Equivalent to executing count() on each local stream.
124 * A terminal operation.
125 % @return The number of local data elements.
126 %/
127 public long localCount ();
128
129 /%
130 x Removes duplicate elements in the local stream.
131 x* Equivalent to executing distinct() on each local stream.
132 x* An intermediate operation.
133 % @return DistributedLongStream without duplicate local data elements.
134 %/
135 public DistributedLongStream localDistinct ();
136
137 VEE
138 x Keeps only the specified number of elements in each local stream.
139 x* Equivalent to executing limit() on each local stream.
140 * An intermediate operation.
Page 54 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

141 * @param maxSize Maximum number of elements to keep.

142 % @return DistributedLongStream with each local stream

143 % truncated to maxSize elements .

144 %/

145 public DistributedLongStream localLimit(long maxSize);

146

147 VEE:

148 * Returns the largest encountered value of a local data element.
149 * Equivalent to executing max() on each local stream.

150 x* A terminal operation.

151 x* @return The largest local data element, or empty if no elements.
152 %/

153 public OptionalLong localMax ();

154

155 /s %

156 % Returns the smallest encountered value of a local data element.
157 * Equivalent to executing min() on each local stream.

158 x* A terminal operation.

159 * @return The smallest local data element, or empty if no elements.
160 %/

161 public OptionalLong localMin ();

162

163 VEE:

164 * Performs an action on each local element and returns the same
165 * DistributedLongStream .

166 * Equivalent to executing peek() on each local stream.

167 * An intermediate operation.

168 % @param action A non—interfering action.

169 % @return The same DistributedLongStream.

170 %/

171 public DistributedLongStream localPeek (LongConsumer action);

172

173 VEY:

174 * Accumulates local elements into a single value of the same type.
175 * Equivalent to executing reduce() on each local stream.

176 * A terminal operation.

177 * @param op Associative accumulating function.

178 % @return Either the reduced value or an empty value if no elements.
179 %/

180 public OptionalLong localReduce(LongBinaryOperator op);

181

182 /s %

183 x* Accumulates local elements into a single value of the same type.
184 * Equivalent to executing reduce() on each local stream.

185 x* A terminal operation.

186 % @param identity The accumulating function’s identity value.

187 * @param op Associative accumulating function.

188 % @return The reduced value.

189 %/

190 public long localReduce(long identity , LongBinaryOperator op);
191

192 /% %
193 * Removes the first n elements in each local stream.
1 December 2014 Version 1.0 Page 55

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

194 x* Equivalent to executing skip() on each local stream.
195 * An intermediate operation.
196 * @param n Number of local elements to skip.
197 % @return DistributedLongStream with the elements removed.
198 %/
199 public DistributedLongStream localSkip(long n);
200
201 /% %
202 % Sorts all elements in each local stream.
203 x* Equivalent to executing sorted() on each local stream.
204 x* An intermediate operation.
205 % @return DistributedLongStream with the elements locally sorted.
206 %/
207 public DistributedLongStream localSorted ();
208
209 /%
210 * Returns the sum of all elements in each local stream.
211 x* Equivalent to executing sum() on each local stream.
212 %« A terminal operation.
213 % @return Sum of local elements.
214 %/
215 public long localSum ();
216
217 Er:
218 % Returns statistics (average, sum, etc.) for each local stream.
219 * Equivalent to executing summaryStatistics() on each local stream.
220 * A terminal operation.
221 x* @return LongSummaryStatistics containing statistics about each
222 * local stream.
223 %/
224 public LongSummaryStatistics localSummaryStatistics ();
225
226 VR
227 x* Collects all local elements into an array.
228 * Equivalent to executing toArray() on each local stream.
229 x* A terminal operation.
230 * @return Array containing all local elements.
231 %/
232 public long[] localToArray ();
233
234 // Overrides
235
236 /% %
237 x* Converts each element into a double.
238 * An intermediate operation.
239 % @return DistributedDoubleStream of converted elements.
240 %/
241 public DistributedDoubleStream asDoubleStream ();
242
243 /% %
244 % Converts each element into a Long object.
245 * An intermediate operation.
246 * @return Distributed Stream of converted elements.
Page 56 Version 1.0 1 December 2014

Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

247 %/

248 public DistributedStream <Long> boxed ();

249

250 /s %

251 * Removes duplicate elements in the DistributedIntStream.

252 x* A stateful eager intermediate operation.

253 * @return DistributedLongStream without duplicate data elements.

254 %/

255 public DistributedLongStream distinct ();

256

257 VEY

258 * Removes elements in the DistributedLongStream that do not satisfy the
259 * specified predicate.

260 * An intermediate operation.

261 * @param predicate Boolean function that decides whether an element

262 % should remain in the Distributed Stream.

263 % @return DistributedLongStream where all elements satisfy the predicate.
264 %/

265 public DistributedLongStream filter (LongPredicate predicate);
266

267 VEE:

268 * Replaces each element of the DistributedLongStream with elements in the
269 % stream returned by the specified mapping function.

270 * An intermediate operation.

271 * @param mapper Mapping function returning a stream.

272 * @return DistributedLongStream with the applied mapping.

273 x/

274 public DistributedLongStream flatMap (

275 LongFunction <? extends LongStream> mapper);

276

277 VEE:

278 « Keeps only the specified number of elements in the DistributedLongStream.
279 * An intermediate operation.

280 * @param maxSize Maximum number of elements to keep.

281 % @return DistributedLongStream truncated to maxSize elements.

282 %/

283 public DistributedLongStream limit(long maxSize);

284

285 VEY:

286 % Replaces each element of the DistributedLongStream with values from the
287 * specified mapping function.

288 % An intermediate operation.

289 x @param mapper Mapping function returning values of type long.

290 % @return DistributedLongStream with the applied mapping.

291 %/

292 public DistributedLongStream map(LongUnaryOperator mapper);
293

294 /s %
295 % Replaces each element of the DistributedLongStream with values from the
296 * specified mapping function.
297 * An intermediate operation.
298 * @param mapper Mapping function returning values of type double.
299 % @return DistributedDoubleStream with the applied mapping.
1 December 2014 Version 1.0 Page 57

Confidentiality: Public Distribution

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

300 %/
301 public DistributedDoubleStream mapToDouble(LongToDoubleFunction mapper);
302

303 /% %

304 * Replaces each element of the DistributedLongStream with values from the
305 x* specified mapping function.

306 * An intermediate operation.

307 x @param mapper Mapping function returning values of type long integer.
308 % @return DistributedIntStream with the applied mapping.

309 %/

310 public DistributedIntStream mapTolnt(LongToIntFunction mapper);
311

312 VEE
313 % Replaces each element of the DistributedLongStream with values from the
314 specified mapping function.

k
315 x* An intermediate operation.

316 x @param mapper Mapping function returning values of an arbitrary type.
317 * @return Distributed Stream with the applied mapping.

318 %/

319 public <U> DistributedStream <U> mapToObj(LongFunction<? extends U> mapper);
320

321 EE

322 * Returns a parallel DistributedLongStream with an otherwise identical
323 % state.

324 * An intermediate operation.

325 * @return A parallel DistributedLongStream .

326 %/

327 public DistributedLongStream parallel ();

328

329 /% %

330 % Performs an action on each element on all nodes and returns the same
331 * DistributedLongStream.

332 x* An intermediate operation.

333 * @param action A non—interfering action.

334 % @return The same DistributedLongStream.

335 %/

336 public DistributedLongStream peek(LongConsumer action);

337

338 /% %

339 % Returns a sequential DistributedLongStream with an otherwise identical
340 % state.

341 * An intermediate operation.

342 * @return A sequential DistributedLongStream .

343 %/

344 public DistributedLongStream sequential ();

345

346 /% %

347 * Removes the first n elements in the DistributedLongStream.
348 x* A stateful eager intermediate operation.

349 x @param n Number of local elements to skip.

350 % @return DistributedLongStream with the elements removed.
351 %/

352 public DistributedLongStream skip(long n);

Page 58 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

353

354 VEE:

355 * Sorts all elements in the DistributedLongStream.

356 * A stateful eager intermediate operation.

357 * @return DistributedLongStream with the elements sorted.
358 x/

359 public DistributedLongStream sorted ();

360 |}

1 December 2014 Version 1.0 Page 59
Confidentiality: Public Distribution

0NN AW —

AR, BASAPA DD EA DB D WL LWL LWLWWULWLOLWWERNRDNDNDNNDLDNDNNDN === ==
O AN WD, OOV IANNPHE VWD, OOVXIANNEAE WD, OO NBAS WD~ OO

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

A Distributed Collection API

package util;

import dstream .:x;
import java.util .x;

VEX:

x* Represents a set of collections on participating compute nodes containing
x data that is part of a distributed dataset.

#/

public interface DistributedCollection <E> extends Collection <E>

{
VEE:
Returns the group of nodes on which the Distributed Collection’s
data resides .

This group is used as the initial compute group for Distributed
Streams backed by the Distributed Collection

@return Distributed Collection’s compute group.

E R

*/
public ComputeGroup getComputeGroup ();

VEE
* Returns a sequential Distributed Stream backed by this
* Distributed Collection.
* @return A new Distributed Stream.
x/
@Override
public default DistributedStream <E> stream ()
{
DistributedStream <E> s = DistributedStreamSupport.stream (
spliterator (), false);
s.setComputeGroup (getComputeGroup ());
return s;

}

EE:
% Returns a parallel Distributed Stream backed by this
x Distributed Collection.
* @return A new Distributed Stream.
#/
@Override
public default DistributedStream <E> parallelStream ()
{
DistributedStream <E> s = DistributedStreamSupport.stream (
spliterator (), true);
s.setComputeGroup (getComputeGroup ());
return s;
}
}

Page 60 Version 1.0 1 December 2014
Confidentiality: Public Distribution

0NN AW~

— e = e e e = e
NN DN R W= OO

0NN AW~

— e = e e = =
~N NN R W= OO

~N NN kW=

MHUNIPER D3.7 — Hadoop with Real-Time Enhancements

A Partitioner API

A.1 Partitioner

package dstream;

VEE:

« Function for partitioning data over a predefined compute group.
x/

@Functionallnterface

public interface Partitioner <T>

{

x* Decides which compute node the data element should be sent to.
% @param data Data element for consideration.
* @return Integer which will be converted into an index of the
* compute node in the compute group. Indexes that are out of bounds

x will be wrapped around.

x/

public int partition (T data);

}

A.2 DoublePartitioner

package dstream;

VEE:

x Function for partitioning data over a predefined compute group.
x/

@Functionallnterface

public interface DoublePartitioner

{

VEE:

* Decides which compute node the data element should be sent to.

% @param data Data element for consideration.

* @return Integer which will be converted into an index of the

* compute node in the compute group. Indexes that are out of bounds
« will be wrapped around.

x/

public int partition (double data);

}
A.3 IntPartitioner

package dstream;

VEE:

« Function for partitioning data over a predefined compute group.
x/

@Functionallnterface

public interface IntPartitioner

1 December 2014 Version 1.0
Confidentiality: Public Distribution

Page 61

10
11
12
13
14
15
16
17

0NN N kW=

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

{
/% %
% Decides which compute node the data element should be sent to.
% @param data Data element for consideration.
x* @return Integer which will be converted into an index of the
% compute node in the compute group. Indexes that are out of bounds
x* will be wrapped around.
x/
public int partition(int data);
}

A4 LongPartitioner

package dstream;

/% %

* Function for partitioning data over a predefined compute group.
#/

@Functionallnterface

public interface LongPartitioner

{
VEE:

Decides which compute node the data element should be sent to.
@param data Data element for consideration.

@return Integer which will be converted into an index of the
compute node in the compute group. Indexes that are out of bounds

will be wrapped around.

LR R I

#/
public int partition (long data);

}

Page 62 Version 1.0 1 December 2014
Confidentiality: Public Distribution

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48

MIunipEr

D3.7 — Hadoop with Real-Time Enhancements

A Compute node and group API

A.1 ComputeNode

package dstream;

VEE:

% Represents a compute node in the cluster.
x Compute nodes can be grouped together with compute groups.
* @see dstream.ComputeGroup

*/
public class ComputeNode

{
/% %

* Program entry point on every node.

x* MPI initialisation and finalisation is done here.
x @param argv Program arguments. argv[0] is the actual class to run which
* must have a static main() method.

*/

public static void main(String[] argv);

/% %

% Returns the compute node’s name.
* @return String containing the node’s name.

%/
public String getName ()
{

return name;

}

/% %

% Tells whether we are executing on this node.
%« @return True if we are executing on this node, false otherwise.

*/
public boolean isSelf ()
{

return this == thisNode;

}

/% %

* Returns the node we are executing on.
% @return The currently executing node.

x/

public static ComputeNode getSelf ()

{

return thisNode;

}

/% %

* Returns the node whose name matches the specified string.
* @param name Name to search for.
#* @return Node with the matching name.

1 December 2014

Version 1.0
Confidentiality: Public Distribution

Page 63

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

49 %/

50 public static ComputeNode findByName(String name)
51 {

52 return thisNode.nodes. get(name);

53 }

54}

A.2 ComputeGroup

1 package dstream;
2
3 /e
4 * Represents a group of compute nodes.
5 % @see dstream.ComputeNode
6 #/
7 public class ComputeGroup extends ArrayList<ComputeNode> // A group of compute nodes
8 |
9 VEE:
10 * Constructor that creates an empty compute group.
11 %/
12 public ComputeGroup ()
13 {
14 super ();
15
16 }
17
18 /%
19 x* Constructor that creates a compute group from a collection of
20 * compute nodes.
21 % @param nodes Collection of compute nodes. Can also be an existing
22 % compute group since it is a collection of compute nodes.
23 #/
24 public ComputeGroup(Collection <ComputeNode> nodes)
25 {
26 this ();
27 addAll (nodes);
28 }
29
30 VEE:
31 x* Constructor that creates a compute group consisting of a single
32 % compute node.
33 x @param node Compute node that will be part of the new group.
34 %/
35 public ComputeGroup (ComputeNode node)
36 {
37 this ();
38 add (node);
39 }
40
41 VEE:
42 * Returns a compute group consisting of all nodes in the cluster.
43 % @return New compute group with all nodes in cluster.
44 %/
Page 64 Version 1.0 1 December 2014

Confidentiality: Public Distribution

45
46
47
48
49

MIunipEr

D3.7 — Hadoop with Real-Time Enhancements

public static ComputeGroup getCluster ()

{

return new ComputeGroup(cluster);

}
}

1 December 2014

Version 1.0
Confidentiality: Public Distribution

Page 65

D3.7 — Hadoop with Real-Time Enhancements MHUNIPER

Page 66 Version 1.0 1 December 2014
Confidentiality: Public Distribution

MUnIPER D3.7 — Hadoop with Real-Time Enhancements

References

[1] Apache Software Foundation. Apache Hadoop. http://hadoop.apache.org/, accessed
2013/09/01.

[2] Apache Software Foundation. Apache Spark — Lightning-Fast Cluster Computing. http:
//spark.incubator.apache.orqg/, accessed 2013/10/03.

[3] Apache Software Foundation. Spark Examples. http://spark.apache.org/
examples.html, accessed 2014/10/22.

[4] Bryan Carpenter, Aamir Shafi, and Mark Baker. MPJ Express Project. http://www.
mpjexpress.orqg/, accessed 2014/11/16.

[5] Yu Chan, Ian Gray, and Andy Wellings. Exploiting Multicore Architectures in Big Data Appli-
cations: The JUNIPER Approach. In Proceedings of 7th Workshop on Programmability Issues
for Heterogeneous Multicores (MULTIPROG-2014), January 2014.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, January 2008.

[7] Adam Jacobs. The pathologies of big data. Queue, 7(6):10:10-10:19, July 2009.

[8] Nathan Marz. Storm — Distributed and fault-tolerant realtime computation. http://storm—
project.net/, accessed 2013/10/03.

[9] Oracle Corporation. AbstractTask.java. http://hg.openjdk. java.net/jdk8/tl/
jdk/file/tip/src/share/classes/java/util/stream/AbstractTask.
java, accessed 2014/05/05.

[10] Oracle Corporation. Stream (Java Platform SE 8). https://docs.oracle.com/
javase/8/docs/api/Jjava/util/stream/Stream.html, accessed 2014/11/17.

[11] Marcel Proust. Remembrance of Things Past. http://alarecherchedutempsperdu.
com/text .html| accessed 2013/09/04.

[12] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

1 December 2014 Version 1.0 Page 67
Confidentiality: Public Distribution

http://hadoop.apache.org/
http://spark.incubator.apache.org/
http://spark.incubator.apache.org/
http://spark.apache.org/examples.html
http://spark.apache.org/examples.html
http://www.mpjexpress.org/
http://www.mpjexpress.org/
http://storm-project.net/
http://storm-project.net/
http://hg.openjdk.java.net/jdk8/tl/jdk/file/tip/src/share/classes/java/util/stream/AbstractTask.java
http://hg.openjdk.java.net/jdk8/tl/jdk/file/tip/src/share/classes/java/util/stream/AbstractTask.java
http://hg.openjdk.java.net/jdk8/tl/jdk/file/tip/src/share/classes/java/util/stream/AbstractTask.java
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://alarecherchedutempsperdu.com/text.html
http://alarecherchedutempsperdu.com/text.html

	Introduction
	Layering programming models

	Java 8 Streams
	Java Stream API
	Implementation of Streams
	The fork-join framework
	Parallel execution of pipelines

	Example

	Requirements from real-time Big Data
	Distributed Streams
	Lazy evaluation and distributing data
	Distributed Collections and Distributed Stored Collections
	Summary of requirements

	Extensions
	Compute nodes and groups
	Distributed Collections
	Distributed Streams – Drop-in replacement extensions
	Distributed Streams – Distribution of data extensions

	Prototype implementation
	Compute nodes and groups
	Distributed Collections
	Distributed Streams – Distribution of data extensions
	Default partitioner
	The distribute operation

	Distributed Streams – Drop-in replacement extensions
	The reduce operation
	The allMatch operation
	The count operation
	The distinct operation
	The forEach operation

	Mapping MapReduce to JUNIPER
	MapReduce and Hadoop
	Distributed Stream implementation
	Illustrative example

	Mapping in-memory streaming to JUNIPER
	Spark and comparisons with Distributed Streams
	Storm and comparisons with Distributed Streams
	Distributed Stream implementation for Spark
	Distributed Stream implementation for Storm
	Illustrative example

	Initial evaluation
	Experimental setup
	Tests
	Results and evaluation

	Further exploitation of the JUNIPER platform
	Conclusions
	Distributed Stream API
	DistributedStream
	DistributedDoubleStream
	DistributedIntStream
	DistributedLongStream
	Distributed Collection API
	Partitioner API
	Partitioner
	DoublePartitioner
	IntPartitioner
	LongPartitioner
	Compute node and group API
	ComputeNode
	ComputeGroup
	References

