Pulmonary Function Is Stable Through Week 144 in Patients With Duchenne Muscular Dystrophy (DMD)

INTRODUCTION

Duchenne Muscular Dystrophy (DMD): Devastating Rare Disease
- Rare X-linked recessive muscular dystrophy
- BDM is caused by mutations in the gene for dystrophin, a protein that plays a key role in cell and muscle function.

Exon-Skipping Drug: Eteplirsen
- Addresses the underlying cause of DMD
- Eteplirsen is a morpholino-oligonucleotide that targets alternative splicing.

PMO restores dystrophin in diaphragm: MDX mouse model
- Eteplirsen restores dystrophin expression in diaphragm muscle of transgenic mdx mice.

Pulmonary Function Tests: Importance for DMD
- Measures the total volume of air expelled during forced exhalation after maximum inspiration.
- MIP, MEP, and FVC are primary and secondary endpoints in DMD clinical trials.

METHODS + RESULTS

Eteplirsen Phase III Studies
- Randomized, double-blind, placebo-controlled trials.

Patient Characteristics at Baseline
- Table 1: Demographics and baseline characteristics.

Summary of Pulmonary Function Tests: Week 144 Treatment Results in ITT Population (n=12)
- Table 2: Summary of pulmonary function tests.

CONCLUSIONS
- Eteplirsen demonstrated stability on PFTs in the ITT population (n=12), as measured by MIP, MEP, FVC, MIP % predicted, MEP % predicted and FVC % predicted from baseline through Week 144.
- The reported stability on PFT measurements over nearly 5 years is contrary to a steady decline observed in the DMD natural history.