
Project Number 318772

D3.1 – Report on Domain Analysis of OSS Quality
Attributes

Version 1.0
21 October 2013

Final

Public Distribution

Centrum Wiskunde & Informatica

Project Partners: Centrum Wiskunde & Informatica, SOFTEAM, Tecnalia Research and Innovation,
The Open Group, University of L′Aquila, UNINOVA, University of Manchester,
University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however
the OSSMETER Project Partners accept no liability for any error or omission in the same.

© 2013 Copyright in this document remains vested in the OSSMETER Project Partners.

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Project Partner Contact Information

Centrum Wiskunde & Informatica SOFTEAM
Paul Klint Alessandra Bagnato
Science Park 123 Avenue Victor Hugo 21
1098 XG Amsterdam, Netherlands 75016 Paris, France
Tel: +31 20 592 4126 Tel: +33 1 30 12 16 60
E-mail: paul.klint@cwi.nl E-mail: alessandra.bagnato@softeam.fr

Tecnalia Research and Innovation The Open Group
Jason Mansell Scott Hansen
Parque Tecnologico de Bizkaia 202 Avenue du Parc de Woluwe 56
48170 Zamudio, Spain 1160 Brussels, Belgium
Tel: +34 946 440 400 Tel: +32 2 675 1136
E-mail: jason.mansell@tecnalia.com E-mail: s.hansen@opengroup.org

University of L′Aquila UNINOVA
Davide Di Ruscio Pedro Maló
Piazza Vincenzo Rivera 1 Campus da FCT/UNL, Monte de Caparica
67100 L’Aquila, Italy 2829-516 Caparica, Portugal
Tel: +39 0862 433735 Tel: +351 212 947883
E-mail: davide.diruscio@univaq.it E-mail: pmm@uninova.pt

University of Manchester University of York
Sophia Ananiadou Dimitris Kolovos
Oxford Road Deramore Lane
Manchester M13 9PL, United Kingdom York YO10 5GH, United Kingdom
Tel: +44 161 3063098 Tel: +44 1904 325167
E-mail: sophia.ananiadou@manchester.ac.uk E-mail: dimitris.kolovos@york.ac.uk

Unparallel Innovation
Nuno Santana
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão, Portugal
Tel: +351 282 485052
E-mail: nuno.santana@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Contents

1 Introduction 2

1.1 Outline of Deliverable 3.1 . 3

2 Towards a Software Quality Model 5

2.1 The ISO/IEC 9126-1:2001 quality model . 5

2.2 Other Quality Attributes . 6

2.3 Requirements for OSSMETER quality attributes . 6

3 OSS Quality Model Attributes & Metrics 7

3.1 Attributes Defining Quality of OSS Projects . 7

3.1.1 Source Code Attributes . 7

3.1.2 Activity Attributes . 10

3.2 Common metrics for measuring quality attributes 10

3.3 Presentation of Metrics . 10

3.4 Tool Survey . 11

3.4.1 Outcome of the tool survey . 12

4 The Rascal Meta-Programming Language 13

4.1 The Needs of OSSMETER . 13

4.2 Origins . 13

4.3 Quick Overview . 13

4.4 Simple Examples . 16

4.5 Some Enabling RASCAL Features in More Detail 17

4.5.1 Type Literals . 17

4.5.2 Source Locations . 18

4.5.3 String Templates and Concrete Syntax Templates 19

4.5.4 RASCAL-to-Java Bridge . 19

5 Metrics Meta Model (M3) 20

5.1 Architecture . 21

5.2 The Core M3 Model . 22

5.3 The Core M3 Model in Rascal . 22

5.4 Language Specific M3 Model . 23

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page iii

D3.1 – Report on Domain Analysis of OSS Quality Attributes

5.4.1 M3 Java Model . 23

5.4.2 The M3 Java Model in Rascal . 23

5.5 Metrics based on M3 model . 24

5.5.1 Metric Implementation . 24

5.5.2 Examples of some metric implementations 24

5.5.2.1 Number of Methods . 24

5.5.2.2 Lines of code . 25

5.5.3 Assessment . 26

6 Visualization 27
6.1 The Rascal Visualization Library . 27

6.2 Examples of Metrics Visualizations . 28

6.2.1 Visualizing a Type Hierarchy . 28

6.2.2 Visualizing the Structure of a Java Program 28

7 Expected Compliance with OSSMETER Requirements 31

8 Summary, Conclusions and Future Work 34
8.1 Summary . 34

8.2 Answers to Questions in Workplan . 34

8.2.1 Which source code and version management attributes are most relevant for
tracking the quality of OSS projects? . 34

8.2.2 What are the observable effects of these attributes in the source code and the
version management system? . 34

8.2.3 How can these attributes be measured? . 34

8.2.4 What are the costs of measurement tools for each metric (= cost of measure-
ment implementation)? . 35

8.2.5 What are the tradeoffs between accuracy and efficiency for each metric? (=
cost of measurement application?) . 35

8.2.6 What tools (existing or new) are needed to provide the required measurements? 35

8.3 Conclusions and Future Work . 35

Appendix A An extract of the M3 model for a Java program 39

Page iv Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Document Control

Version Status Date
0.1 First version 26 September 2013
0.2 Second version (Changes

reflecting internal review)
10 October 2013

1.0 First Public Version 21 October 2013

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page v

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Executive Summary

Meaningful and effective measurement of quality attributes of Open Source Software (OSS) requires:

• Analysis of and insight in the domain of software quality measurement.
• Identification of relevant metrics to measure software quality attributes.
• A meta-model to store the results of measurement (i.e., facts directly extracted from the source)

as well as any metrics that are derived from these measurements.
• Calculation of metrics based on the extracted facts.

In this deliverable we present:

• A brief summary of motivation and challenges for Task 3.1.
• Introduction to software quality as described in ISO/IEC 9126-1:2001.
• An initial set of requirements for quality attributes in OSSMETER.
• A survey of the domain of software quality.
• An initial selection of metrics that are relevant for measuring software quality attributes.
• A tool survey of existing tools for metric calculation.
• A quick overview of the RASCAL meta-programming language that will be used for metric

calculation.
• A proposal for and illustration of the Metrics Meta-Model (M3), a general framework for

representing basic facts as well as derived (computed) metrics. We show how M3 can be ex-
tended to represent Java-specific facts and how these facts form the basis for metric computation
and visualization. The presented metrics are already useful but are primarily intended as a
proof-of-concept of the approach.
• An estimation how well the general OSSMETER requirements for WP3 can be satisfied.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 1

D3.1 – Report on Domain Analysis of OSS Quality Attributes

1 Introduction

Many different indicators of an OSS project determine its quality but the quality of its source code
and the quality of its developer community are among the top ones. Regarding source code quality,
elementary indicators such as Source Lines of Code (SLOC) can be used and are highly relevant.
However, many variations exist even for such a simple metric (count lines with/without comments or
blank lines, count statements rather than lines, etc.) and we need project-wide consistency to base
OSS project comparisons on. Slightly more advanced metrics consider cohesion and coupling of
components, consistency of identifiers using nano-patterns [17] and the occurrence of certain code
smells [20].

We make a distinction between generic (or language-agnostic) methods that can be used to analyze
across different implementation languages in an OSS project, and language-specific methods that
are only applicable to one implementation language. We make a further distinction between text-
based and syntax- based techniques. The latter require the creation or adaptation of grammars for the
relevant languages, and the availability of appropriate tool generation techniques.

Regarding the developer community, the information source most closely tied to the source code is
the version management system. This will be used to measure developer activity and involvement in
the course of the project. Examples of language-agnostic developer involvement and code evolution
properties are:

1. The distribution of developers over time and location.

2. The evolution over time of each component (in order to identify high-activity components).

3. Co-evolution of components (important to identify implicit component dependencies).

Examples of language-specific development activities are:

1. Correlation between evolution and code metrics.

2. Co-evolution of components that do not explicitly invoke each other.

3. Correlation between code smells and specific developers.

In order to obtain the relevant properties we need:

1. Parsers for all relevant implementation languages.

2. Fact extractors that can extract all the information from source code that is needed to compute
the selected metrics.

3. Metrics calculators that synthesize the extracted facts to the required metrics.

4. Analysis tools that perform the required smell detection.

5. Reporting and visualization to summarize the findings per project.

For this we will largely depend on the Rascal meta-programming language.1

1http://www.rascal-mpl.org

Page 2 Version 1.0
Confidentiality: Public Distribution

21 October 2013

http://www.rascal-mpl. org

D3.1 – Report on Domain Analysis of OSS Quality Attributes

1.1 Outline of Deliverable 3.1

A domain analysis is needed to explore the domain of OSS software quality measurement and to make
an inventory of the measurement tasks that are needed to support it. The following questions have to
be answered:

• Which source code and version management attributes are most relevant for tracking the quality
of OSS projects?
• What are the observable effects of these attributes in the source code and the version management

system?
• How can these attributes be measured? An important issue here is whether a quality metric

can be measured in a generic (or language-agnostic) fashion (i.e., one measurement tool can be
used for all possible software implementation languages encountered in OSS projects) or in a
language-specific fashion (i.e., the quality metric has to be measured by a different tool for each
different language).
• What are the costs of measurement tools for each metric (=cost of measurement implementa-

tion)?
• What are the tradeoffs between accuracy and efficiency for each metric? (= cost of measurement

application)?
• What tools (existing or new) are needed to provide the required measurements.

The domain analysis will include a literature and tool survey and will offer recommendations which
combinations of metrics and tools are most cost effective.

Based on the domain analysis, a metamodel will be developed for describing quality attributes for OSS
projects. This metamodel will be explicitly linked to the overall OSS project metamodel developed in
WP2 and the delineation between these models will have to be discussed among the partners. The
software quality attribute model will include, amongst others, the following information:

• Identification information for the project that links it to the overall OSS project metamodel.
• Information about the implementation languages used in the project.
• Information about the (build, configuration, version management) tools used in the project.
• Information about the source licenses that have been found in the source code.
• Information about external tools and libraries on which the project depends.
• Language-agnostic metrics. Examples of possible candidates are SLOC per implementation

language and text-based code clone metrics.
• Language-specific metrics. Examples of possible candidates are counts for classes, methods,

functions, and more detailed metrics for McCabe complexity, and coupling an cohesion among
modules.

The structure of this deliverable is as follows:

• Section 2 explores how to design a quality model for OSSMETER.
• Section 3 describes essential quality attributes for OSS projects.
• Section ?? describes our initial selection of metrics for measuring these quality attributes. This

section also presents a brief tool survey.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 3

D3.1 – Report on Domain Analysis of OSS Quality Attributes

• Section 4 gives a quick overview of the RASCAL meta-programming language that will be used
for fact extraction and metric calculation.
• Section 5 describes M3 (Metrics Meta-Model) that we have designed for represented facts and

metrics in OSSMETER. The core M3 model and an extension for Java are presented.
• Section 6 briefly illustrates the possibilities for visualizing facts and metrics that are stored in an

M3 model.
• Section 7 summarizes the compliance of the solutions proposed in this deliverable with the

overall OSSMETER requirements.
• Appendix A shows an example of facts extracted from a Java project and represented in the M3

Java Model.

Page 4 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

2 Towards a Software Quality Model

The question raised in the previous section should be considered in the more global perspective of
software quality as described in the ISO/IEC 9126-1:2001 standard that distinguishes the following
aspects of software quality.

2.1 The ISO/IEC 9126-1:2001 quality model

Functionality A set of attributes that bear on the existence of a set of functions and their specified
properties. The functions are those that satisfy stated or implied needs.

• Suitability.
• Accuracy.
• Interoperability.
• Security.
• Functional compliance.

Reliability A set of attributes that bear on the capability of software to maintain its level of perfor-
mance under stated conditions for a stated period of time.

• Maturity.
• Fault tolerance.
• Recoverability.
• Reliability compliance.

Usability A set of attributes that bear on the effort needed for use, and on the individual assessment
of such use, by a stated or implied set of users.

• Understandability.
• Learnability.
• Operability.
• Attractiveness.
• Usability compliance.

Efficiency A set of attributes that bear on the relationship between the level of performance of the
software and the amount of resources used, under stated conditions.

• Time behavior.
• Resource utilization.
• Efficiency compliance.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 5

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Maintainability A set of attributes that bear on the effort needed to make specified modifications.

• Analyzability.
• Changeability.
• Stability.
• Testability.
• Maintainability compliance.

Portability A set of attributes that bear on the ability of software to be transferred from one
environment to another.

• Adaptability.
• Installability.
• Co-Existence.
• Replaceability.
• Portability compliance.

2.2 Other Quality Attributes

There are, however, quality aspects of OSS systems and projects that are not covered by the ISO
quality model:

• The strength of the development community.
• The quality of the development process.
• The economic support and viability.

2.3 Requirements for OSSMETER quality attributes

The attributes of the OSSMETER quality model will be guided by the following requirements and
constraints2

• They should be directly relevant for commercial and non-commercial users of OSS.
• They can be combined in ways that reflect the needs of a specific user or user community. Hence

separate metrics need to be provided both as predefined and as user-definable combinations of
metrics.
• They can be measured on the basis of artifacts that are directly available and can be directly

measured. This includes source code, information from development tools (version management,
bug tracking), and other source (e.g., bulletin boards, e-mail lists).
• They can be measured by static analysis of the artifacts only.

We will now discuss an initial selection of software quality attributes that satisfy these requirements.

2In Section 7 we give an estimation how well the OSSMETER requirements can be satisfied.

Page 6 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

3 OSS Quality Model Attributes & Metrics

3.1 Attributes Defining Quality of OSS Projects

Given the analysis and requirements just described, we propose the following initial set of quality
attributes for source code and for the activities related to the development of source code3.

3.1.1 Source Code Attributes

The source code attributes that we have identified as being most relevant for determining quality are:

• Size: The larger a system becomes, the harder it becomes to understand and maintain it. Size
manifests itself in lines of code, number of components and the like.
• Complexity: Impacts understandability and maintenance. Complexity can be caused by size,

by complex control flow inside components or by complex interactions between components.
• Documentation: Documenting complex parts of the system helps in understanding the system

better. This assumes existence of documentation.
• Coupling: The more external connections (couplings) there are between components, the harder

they are to understand in isolation. A coupling can be a control-flow coupling (one component
calling a method from another component) or a data coupling (one component using a datatype
defined in another component).
• Cohesion: The more internal connections (couplings) there are between internal parts of a

component, the more cohesive it is: these couplings explain why these internal parts belong to
that component in the first place.
• Code smells: Certain coding techniques go against what are considered to be best practices and

are called code smells. Examples are functions or methods with excessively long bodies, the
use of switch statements in an OO language or the use of casts or instanceof.

Source code attributes are domain independent in the sense that they dictate quality for all software
projects, not just open source ones. The benefit of having these attributes in OSSMETER, apart from
showing source code quality, is to provide users (developers who want to contribute/extend open
source projects) with an indication of how easy/hard their task will be.

3 We would like to emphasise that this is an initial list that can be expanded as needed

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 7

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Table 1: Common metrics

Page 8 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Quality attribute Related metrics
Size • Lines of code (LOC)

1. LOC (non-empty)

2. LOC (non-empty, non-commented)

• Number of methods per class
• Number of attributes per class
• Abstractness
• Reuse ratio
• Specialization ratio
• Depth of inheritance tree
• Number of children

Complexity • Cyclomatic complexity
• Weighted methods per class
• Response for a class

Documentation • Density

Coupling • Coupling between objects
• Data abstraction coupling
• Message passing coupling
• Coupling factor
• Afferent coupling
• Efferent coupling
• Instability

Cohesion • Lack of cohesion in methods (many variants available)
• Tight class cohesion
• Loose class cohesion

Contibutors • Number of contributors
• Number of new contributors (in a time frame)
• Number of inactive contributors

Rate of change • Number of commits (in a time frame)

Core contributors • Contributors with a large number of commits compared to other com-
miters
• Contributors who are largely responsible for components in the project

Table 2: Quality attributes and metrics to calculate them.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 9

D3.1 – Report on Domain Analysis of OSS Quality Attributes

3.1.2 Activity Attributes

Activity attributes on the other hand play a much more significant role in the open source domain.
Knowing how fast bug fixes are made, how the project is changing over time or even knowing that the
number of contributors has been declining will provider users means to decide if they wish to adopt a
certain project. Some activity attributes could include:

• Contributors: Information on contributors like the number of contributors can be an indicator
of the health of an open source project. Constant increase in contributors who make frequent
commits could be an indicator that interest in the project is growing.
• Core contributors: Identifying core contributors for a project would give us possibilities to

generate early warnings in case the contributor is no longer actively involved in the project.
Loss of a contributor usually means loss of some knowledge which depending on the situation
could lead to a big maintenance issue for the rest of the contributors.
• Rate of change: Rate of change could provide an indication on how active the development

community is.
• Bug Fixes: The time between a bug report and fix could be an indicator for how actively a

system is maintained by the development community.
• Evolution over time: Evolution of the quality attributes over time would provide indicators for

the health of the project.
• Co-evolution: Identifying co-evolving components would provide for better understanding of

the effects that might propagate through a system when changing a component.

3.2 Common metrics for measuring quality attributes

In Table 1 we summarize the definitions of some common metrics that we will discuss now. The main
sources for these definitions are [13], [6], [2], [12], [4].

In Table 2 we show which metrics can be used to calculate the quality attributes defined in section 3.
As mentioned in footnote 3, this is an initial list that is open for extension.

All the metrics chosen in the initial list are well known metrics in the object-oriented paradigm. The
decision to start with these metrics, lies in the fact that some of the most popular languages for open
source projects fall under this paradigm (like Java, C++, PHP). The goal is to start with analysis of
Java projects and slowly integrate new languages. In time, we will also integrate languages from other
paradigms, again based on their popularity in the open source community.

3.3 Presentation of Metrics

Metrics like lines of code (LOC), defect counts, cyclomatic complexity have been historically used
to measure the quality of projects and productivity. Research has shown that metrics by themselves
have not been a good indicator/predictor for quality or productivity[5]. This leads us to question how
should we present the computer metrics for the various quality attributes, to the users of OSSMETER.
Key requirements here are transparency and adaptability.

Page 10 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

There are two complementary approaches. First, to present the raw metrics calculated for a system
to the users so that they are free to interpret these values subjectively (since no one model will be to
the liking of everyone). Second, to provide a number of quality models to give users more options in
determining the quality of a system. by selecting model parameter specific for their needs. Examples
are the SIG Maintainability Model [7] and the SQO-OSS Quality Model [15]. This allows the users to
use models that they are comfortable with (if any). In addition, this allows us to add or remove models
based on further advancements in the field.

The evaluation of quality observations should mostly be left up to the user to decide. For some metrics,
we can provide evaluations based on quality models as just described. For other metrics, we allow
users to set the threshold values for the metrics that they would like to set for different quality levels
of a system. Typically, we could have 5 scales for quality:

1. Very Good

2. Good

3. Fair

4. Poor

5. Very Poor

We present the calculated metric values for each system and present them to the users in a concise
manner. It is then for the user to decide the threshold values for each metric to separate them into the
different scales.

3.4 Tool Survey

A tool survey was done to identify existing tools that could be used for metric calculation for
OSSMETER. Research has shown that metric values calculated by different tools may vary. The
implementation is dependent on the interpretation of the creators of the tool. As such considering the
aims of OSSMETER we used two primary criteria for tools selection.

1. Metrics Supported
The tool should support a variety of metrics (for example, lines of code, object oriented metrics
suite like C&K metrics suite, complexity, duplication detection).

2. Languages Supported
The tools should support as many languages as possibles to maintain consistency between the
calculate metric values. Using multiple tools for different languages may result in the metrics
being incomparable.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 11

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Tool Languages Supported Metrics Supported
Project

Bauhaus 4
Ada, C, C++, C#, Java Lines of Code per Function,

Cyclomatic McCabe
Complexity, Maximal Nesting,

Clone detection
Understand 5 Ada, C/C++, C#, FORTRAN, Java, Pascal,

Cobol, PHP, JavaScript, XML, Python and
more

Complexity Metrics, Volume
Metrics, Object Oriented

Metrics
CodeSonar 6 C, C++ and Java Size, Complexity, Halstead

metrics
SonarQube 7 Android, C/C++, C#, Cobol, Delphi / Pascal,

Erlang, Flex / ActionScript, Groovy, Java,
JavaScript, PHP, PL/I, PL/SQL, Python,

VB.NET, Visual Basic 6, XML and more

Complexity, Design,
Documentation, Duplications,

Issues, Size, Tests

Table 3: Candidate tools based on the selection criteria.

3.4.1 Outcome of the tool survey

The immediate advantage of using existing tools is that we can get the metrics data without spending
a lot of time. Using SonarQube or Understand we would have a host of metrics data for many of the
languages popular in open source development.

The drawbacks on the other hand, can be divided in two parts:

• Using multiple tools from those available
1. Different tools use different definitions for the same metric resulting in different values.

2. Different tools use different meta models for metric calculation, this could complicate
integration.

3. Different tools use different implementation languages, which becomes relevant when
adding a new metric since users of the tools will require to learn many languages.

• Using a single tool from those available
1. We assume the definition of the metrics in the tool are correct.

2. We have no control over the model used for metrics calculation. This could pose a
maintenance issue for metrics no written by the creators.

We feel the drawbacks of using existing systems outweigh the possible advantages. We thus reached
the conclusion to create and implement our own meta model for metrics (discussed next) where we try
to address these concerns.

4See http://www.bauhaus-stuttgart.de/bauhaus/demo/index.html
5See http://www.scitools.com/
6See http://www.grammatech.com/codesonar
7See http://www.sonarqube.org/

Page 12 Version 1.0
Confidentiality: Public Distribution

21 October 2013

http://www.bauhaus-stuttgart.de/bauhaus/demo/index.html
http://www.scitools.com/
http://www.grammatech.com/codesonar
http://www.sonarqube.org/

D3.1 – Report on Domain Analysis of OSS Quality Attributes

4 The Rascal Meta-Programming Language

4.1 The Needs of OSSMETER

As we have seen in the previous sections, to achieve the goals of OSSMETER many different metrics
will have to be computed for different programming languages. We have also seen that different tools
only provide partial support for the metrics that are relevant for OSSMETER. Another problem is that
different tools use different versions of the same metric which makes their results hard to combine
in a single framework. There is therefore a strong need for a flexible, uniform, approach to metrics
calculation that can cater for all the needs of OSSMETER. Fom previous experience, we also know
that directly implementing more advanced metrics in Java is error-prone and labor-intensive. This is
the reason why we are introducing the state-of-the-art meta-programming language RASCAL to help
solving these problems. The role of RASCAL will be:

• To formalize the Metrics Meta Model to be introduced in Section 5.
• To extract facts from source code.
• To compute metrics.
• To visualize these metrics.

4.2 Origins

RASCAL [10, 9] is a meta programming language focused on the implementation of domain-specific
languages and on the rapid construction of tools for software analysis and software transformation.
RASCAL is the successor to both ASF [1] and ASF+SDF [19, 18], providing features for defining
grammars, parsing programs, analyzing program code, generating new programs, interacting with
external tools (through Java), and visualizing the results of these operations. Given this feature set,
RASCAL is an ideal language for implementing analysis tools and metrics calculations in OSSMETER.

4.3 Quick Overview

RASCAL was designed to cover the entire domain of meta-programming, shown pictorially in Figure 1.
The language itself is designed with unofficial “language layers”. This allows RASCAL developers
to start with just the core language features, adding more advanced features as they become more
comfortable with the language. This language core contains basic data-types (booleans, integers,
reals, source locations, date-time, lists, sets, tuples, maps, relations), structured control flow (if, while,

Figure 1: The meta-programming domain: three layers of software representation with transitions.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 13

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Type Example literal
bool true, false
int 1, 0, -1, 123456789
real 1.0, 1.0232e20, -25.5
rat 1r4, 22r7, -3r8
str "abc", "first\nnext"
loc |file:///etc/passwd|
datetime $2012-05-08T22:09:04.120+0200
tuple[t1, . . . , tn] 〈1, 2〉, 〈"john", 43, true〉
list[t] [], [1], [1,2,3], [true, 2, "abc"]
set[t] {}, {1, 2, 3, 5, 7}, {"john", 4.0}
rel[t1, . . . , tn] {〈1, 2〉, 〈2, 3〉, 〈1, 3〉}, {〈1, 10, 100〉, 〈2, 20, 200〉}
map[t, u] (), (1 : true, 2 : true), (6 : {1, 2, 3, 6}, 7 : {1, 7})
node f, add(x, y), g("abc", [2, 3, 4])

Table 4: Basic RASCAL Types.

switch, for), and exception handling (try, catch). The syntax of these constructs is designed to be
familiar to programmers: for instance, if statements and try/catch blocks look like those found in
C and Java, respectively. All data in RASCAL is immutable (i.e., no references are ever created or
taken), and all code is statically typed. At this level, RASCAL looks like a standard general purpose
programming language with immutable data structures.

RASCAL’s type system is organized as a lattice, with bottom (void) and top (value) elements. The
RASCAL node type is the parent of all user-defined datatypes, including the types of concrete syntax
elements (Stmt, Expr, etc). Numeric types also have a parent type, num, but are not themselves in a
subtype relation: i.e., real is not a parent of int. The basic types available in RASCAL, including
examples, are shown in Table 4.

Beyond the type system and the language core, RASCAL also includes a number of more advanced
features. These features can be progressively added to create more complex programs, and are needed
in RASCAL to enable the full range of meta-programming capabilities. These more advanced features
include:

• Algebraic data type definitions, with optional type parameters, allow the user to define new data
types for use in the analysis. These data types are similar to sum types in functional languages
like ML or sort and operator definitions in algebraic systems like Maude.
• A built-in grammar formalism allows the definition of context-free grammars. These grammars

are used to generate a scannerless generalized parser, which allows for modular syntax definitions
(i.e., unions of defined grammars) and the parsing of programs in real programming languages.
The syntax formalism is EBNF-like and includes disambiguation facilities, such as the ability to
indicate associativity and precedence, add follow restrictions, and even provide arbitrary code
to disallow specific parses.
• Pattern matching is provided over all RASCAL data types: matches can be performed against

numbers, strings, nodes, etc. A number of advanced pattern matching operators, such as deep
match (/) (matching values nested at an arbitrary depth inside other values), negative match (!),

Page 14 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

set matching, and list matching are also provided. Given the importance of concrete syntax for
some meta-programming tasks, it is also possible to match against concrete syntax fragments,
e.g., matching a while loop and binding variables to syntax fragments representing the loop
condition and the loop body.
• Additionally, pattern matching is used in the formal parameters of functions, allowing function

dispatch to be based on the pattern matching mechanism. This provides for more extensible
code, since new constructors of a user-defined datatype can be handled by using new variants of
an existing function, instead of requiring a single function with a large switch/case statement. As
an equivalent to the switch/case default case, a default function provides the default behavior
for the function when none of the other cases match.
• In cases where there are multiple matches for a pattern, backtracking happens from right to

left in a pattern, enforcing lexical scope (names bind starting at the left, and can be used in the
pattern to the right of the binding site) and providing a natural order on matches. A successful
match can be explicitly discarded by the user with the fail keyword.
• List, set, and map comprehensions, in combination with pattern matching and other RASCAL

expressions, allow new lists, sets, and maps to be constructed based on complex conditions. For
instance, one could use a deep match to find all while loops in a set of program files that contain
a condition with a less than comparison. Also provided is the <- element generation operator,
which can enumerate the elements of all container data-types, e.g. lists, sets, maps, and trees,
and can be used inside comprehensions and in for loops.
• String templates with margins and an auto-indent feature provide a straightforward way to

generate formatted code in multi-line source code templates.
• visit statements, with a syntax similar to that of switch statements, perform structure-shy

traversals of RASCAL data types, allowing one to match only those cases of interest. Visit cases
can execute arbitrary code, for instance to keep track of statistics or analysis information, or
can directly replace the matched node with one of the same type. Visits are parameterized by a
traversal strategy (e.g., top-down) to allow different traversal orders.
• solve statements allow fixed-point computations to be expressed directly as a language construct.

The statement continues to iterate as long as the result of the condition expression continues to
change.

A number of RASCAL features also focus on the safety and modularity of RASCAL code. While local
variable type can be inferred, parameter and return types in functions must be provided. This allows
better error messages to be generated, since errors detected by the inferencer can be localized within a
function, and also provides documentation (through type annotations) on function signatures. Also,
the only casting mechanism is a pattern match, which prevents the problems with casts found in C
(lack of safety) and Java (runtime casting exceptions). Finally, the use of persistent data structures
eliminates a number of standard problems with using references which can leak out of the current
scope or be captured by other variables.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 15

D3.1 – Report on Domain Analysis of OSS Quality Attributes

fmod PEANO is

sort Nat .

op z : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars N M : Nat .

op plus : Nat Nat -> Nat .

eq plus(s(N),M) = s(plus(N,M)) .

eq plus(z,M) = M .

endfm

Figure 2: Peano arithmetic expressed in Maude.

module Nat

data Nat = z() | s(Nat);

Nat plus(s(Nat n), Nat m) = s(plus(n,m));

Nat plus(z(), Nat m) = m;

Figure 3: Peano arithmetic expressed in RASCAL.

4.4 Simple Examples

As a simple example, imagine that we want to work with the Peano representation of natural numbers.
This can be done in any system supporting term rewriting. In Figure 2 we show has this is done in
Maude [3] (in ASF it would look more or less similar). In RASCAL, this same functionality would be
defined as shown in Figure 3.

Function plus could also be defined in RASCAL using a switch/case statement (see Figure 4).

As a more complex example, take the case where we have colored binary trees: trees with an integer in
the leaves, but with a color (given as a string) defined at each composite node. This would be defined
as shown in Figure 5.

Suppose we want to analyze a ColoredTree, computing how often each color appears at each node.
The RASCAL code is shown in Listing 6. In this code, we use a map, held in a local variable counts

with inferred type map[str, int], to maintain the counts. A visit statement is used to traverse the
binary tree, matching only the composite nodes, and binding the color stored in the node to the string

Nat plussc(Nat n, Nat m) {

switch (n) {

case s(n) : return s(plussc(n,m)) ;

case z() : return m;

}

}
Figure 4: Alternative definition of plus using switch /case in RASCAL.

Page 16 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

data ColoredTree

= leaf(int n)

| composite(str color, ColoredTree left, ColoredTree right);

Figure 5: Definition of a ColoredTree datat type in RASCAL.

public map [str , int] colorDistribution(ColoredTree t) {

counts = (); // initialize an empty map

visit (t) { // all leaves and composite nodes in the tree

case composite(str color,_,_):

// for each composite node: increment count for color

// (use 0 as default when not yet in table)

counts[color] ? 0 += 1;

}

return counts;

}

Figure 6: Counting frequencies of colors in a ColoredTree.

variable color. The statement counts[color]?0 += 1 then increments the current frequency count
for the given color if it exists, or it initializes to 0 first and then increments, assigning the result back
into the map entry for the color.

4.5 Some Enabling RASCAL Features in More Detail

To better understand how RASCAL can be used for computing metrics, we first discuss four key
enabling RASCAL features: type literals that allow types to be treated as values, source location
literals that provide access to external resources via Uniform Resource Locators (URIs), string
templates for code generation, and the RASCAL-to-Java bridge to connect arbitrary Java libraries to
RASCAL.

4.5.1 Type Literals

The RASCAL type system provides a uniform framework for both built-in and user-defined types,
with the latter defined for both abstract datatypes and grammar non-terminals (also referred to as con-
crete datatypes). A built-in tree datatype (node) acts as an umbrella for both abstract and concrete
datatypes. The type system is based on a type lattice with void at the bottom and value at the top
(i.e., the supertype of all types). In between are the types for atomic values (bool, int, real, str,
loc, datetime), types for tree values (node and defined abstract and concrete datatypes), and com-
posite types with typed elements. Examples of the latter are list[int], set[int], tuple[int,str],
rel[int,str], and, for a given non-terminal type Exp, map[Exp,int]. Sub-typing is always covari-
ant with respect to these typed elements; with functions, as is standard, return types must be covariant,
while the argument types are instead contravariant. For example, for sets, set[int] is a subtype of
set[value], while for functions, int(value) is a subtype of value(int).

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 17

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Formal type parameters allow the definition of generic types and functions. All non-atomic types
can have explicit type parameters, written as &T or &T <: Bound. The former can be bound to any
RASCAL type, the latter only to subtypes of the type Bound. For example, rel[&T,&T] defines a
generic binary relation type over elements of the same type, list[&T <: num] defines a list with
elements that can only be one of the subtypes of the type num, and list[&T] reverse(list[&T] L)

defines the type of a function with the name reverse that returns a list with the same element type as
its argument L.

Reified types make it possible to manipulate types as ordinary values that can be passed around,
queried and manipulated. RASCAL’s reification operator creates self-describing type values which
contain both the reified type and all datatypes used in this type. A type can be reified using the prefix
reification operator (#); we call such an expression a type literal. A reified type value contains a symbol
to represent the type and a map of definitions for any abstract or concrete datatype dependencies. It
is guaranteed to have the type type[&T], where the type parameter &T is bound to the type that was
reified. For example:

• #int produces a literal value type(\int(),()) of type type[int].
• #rel[int,str,bool] produces type(\rel([\int(),\str(), \bool()]),()) of type

type[rel[int,str,bool]].

The type data constructor used to build type literals is built in to RASCAL; the representations for type
symbols and their definitions are defined as RASCAL datatypes in a library module. Above, the map
of definitions was empty: (). For abstract or concrete datatypes this map will contain the complete
(possibly recursive) abstract datatype or grammar. Assume a definition for Boolean connectives:

data Bool = and(Bool l, Bool r) | t() | f();

then the reified type #Bool will produce the following term of type type[Bool] (some details have
been elided):

type(adt("Bool"),

(adt("Bool"):choice(...,constructor(adt("Bool"),"and",

[label("l",adt("Bool")),label("r",adt("Bool"))]),...)))

Such self-describing type values are particularly useful in the context of defining and using meta-
models.

4.5.2 Source Locations

RASCAL provides built-in support for location literals (values of type loc) that are Uniform Resource
Identifiers8 (URIs) optionally followed by text coordinates that allow the identification of specific
text ranges in the information the URI points at. Location literals are quoted with bars, such as
|http://www.rascal-mpl.org|.

8See http://www.ietf.org/rfc/rfc3986.txt.

Page 18 Version 1.0
Confidentiality: Public Distribution

21 October 2013

http://www.rascal-mpl.org
http://www.ietf.org/rfc/rfc3986.txt

D3.1 – Report on Domain Analysis of OSS Quality Attributes

In addition to the standard schemes like file (local file access) and http (remote file access), a
number of RASCAL-special schemes are supported such as cwd (current working directory), home (the
user’s home directory), std (the RASCAL standard library), jar (an entry in a jar file), and project

(an Eclipse project). The collection of schemes is openly extensible – the extension implements a
contribution interface in Java.

The location datatype conveniently provides direct access to parts of the URI and gives short-hands to
interact with file systems and web pages. Source locations in RASCAL are very versatile and are, for
instance, used for tasks such as accessing source code locations in editors and providing hyperlinking
functionality in the IDE. In the context of OSSMETER we use them to identify locations in source
code.

4.5.3 String Templates and Concrete Syntax Templates

RASCAL provides both string templates and concrete syntax templates for code generation, a frequently
occurring operation in meta-programming. String templates are multi-line string literals with a left-
margin, interpolation of arbitrary expressions, auto-indentation, and structured control flow. For
example, the following code generates the definition of a Java class named name with a number of
fields (given as name×type pairs in relation fields), all indented by 2 spaces:

str class(str name, rel [str ,str] fields) =

"class <name> {

’ <for (<f,t> <- fields) {><t> <f>;

’<}>

’}";

Concrete syntax templates are parsed fragments of code, used for pattern matching and pattern
construction. Concrete syntax fragments are supported for languages that have a grammar defined in
RASCAL. For example:

import lang::rascal::syntax::Rascal;

Module m = ‘module M imports N; ...‘;

The fragment within the backquotes will be parsed using the grammars defined in the current scope
(here, the imported grammar of RASCAL). Concrete syntax fragments allow for anti-quoting to expand
variables or to match and bind parts using pattern matching. The benefit of concrete syntax fragments
is that both generated code and patterns are statically guaranteed to be syntactically correct.

4.5.4 RASCAL-to-Java Bridge

The RASCAL-to-Java Bridge makes it possible to call Java functions from RASCAL code and to build
RASCAL data values in Java code. RASCAL users can extend their library reusing existing Java code

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 19

D3.1 – Report on Domain Analysis of OSS Quality Attributes

or building on top of the Java standard library. This enables, for example, reuse of parsers, JDBC
libraries, open Java compilers, SMT solvers, and the Apache Math library. The author of a library
written in Java is responsible for producing RASCAL data of the right type. Consider the size function
for lists:

@javaClass{org.rascalmpl.library.Prelude}

public java int size(list [&T] lst);

The modifier java indicates that the function size is written in Java and the annotation javaClass

defines in which class the method size can be found. The function is then implemented by the
following Java code:

public class Prelude {

IValueFactory vf;

...

IInteger size(IList lst) {

return vf.integer(lst.length());

}

}

The Java API IValueFactory makes it possible to construct arbitrary RASCAL values. If the returned
type does not match the return type of the associated RASCAL function, a run-time type exception will
occur, ensuring this mechanism cannot be used to break type safety. We have already used the Java
Bridge to connect external PHP parsers and it will also be used in connecting RASCAL-based metrics
calculators to the OSSMETER platform.

5 Metrics Meta Model (M3)

The idea behind the meta model, inspired by work on [14], [11] and [16], is to represent language
specific source facts as relations in the model. Each relation in the meta model represents information
that we feel is required to either calculate a metric directly or provide additional information in some
metric calculation. During the formulation of the meta model, we identified relations that are exhibited
by many programming languages which led us to divide the meta model into two parts, namely the
Core M3 Model and Language-specific M3 models that extend the core for different programming
languages. In Sections 5.2 and 5.3 we present the M3 Core Model and in Section 5.4 we discuss
language-specific models and focus on Java.

An essential ingredient of our proposal are source code locations that are based on Uniform Resource
Identifiers (URIs)9. An essential part of an URI is the scheme that defines how the information pointed
to by the URI has to be interpreted. Typical examples are http, ftp, and mailto. In our proposal we
use URI schemes to encode source language and language-element that the URI points to. Examples
are:10

9See http://tools.ietf.org/html/rfc3986.
10We use the syntax for source locations as provided by the loc datatype in the RASCAL language, see Section 4.5.2.

Page 20 Version 1.0
Confidentiality: Public Distribution

21 October 2013

http://tools.ietf.org/html/rfc3986

D3.1 – Report on Domain Analysis of OSS Quality Attributes

|project://rascal|

parser/compiler

internal AST

reuse/otherwise obtained

projects

extractor

relational

M3

rascal AST

linker

*per file / per project

*resolves dependencies

big M3

metrics and visuals

tables graphs$$

Figure 7: Reference Architecture

• |java+class://P2SnakesLadders/snakes/Game|: defines Java as source language and de-
notes a class declaration.
• |java+method://P2SnakesLadders/snakes/Game/setSquare(int,snakes.ISquare)|: de-

fines Java as source language and denotes a method declaration.
• |java+field://P2SnakesLadders/snakes/Game/squares|: defines Java as source language

and denotes a field declaration.
• |project:// P2SnakesLadders/src/snakes/Game.java|(3200,53,<130,41>,<130,94>)

shows how specific source coordinates (line and character information) can be included in
source locations.

In addition to providing a completely general and extensible naming scheme, it is also straightforward
to provide IDE support for the hyperlinking between extracted data and the original source code.

5.1 Architecture

Figure 7, shows how the M3 meta-model is created from source files and provides an indication of how
the M3 model will be used by metrics/visualizations. The first task is to extract source facts in the form
of an M3 model. We achieve this through reusing parser or compiler for each programming language
encountered in the project. For each language supported in OSSMETER, we will need custom
extractors. The extractor traverses through the internal Abstract Syntax Tree (AST) representation of
each source file in the project, creating the relations in the model and later fuses them together as a
single model for a project. The granularity of the M3 model can be per file or per project. In the case
the granularity is set to be a project, we get a single M3 model even if multiple languages are found to
be present with the difference between the languages being represented in the scheme of the URI’s we
use to represent source code elements.

The details of how the model can be used to implement metrics will be discussed in Section 5.5.1.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 21

D3.1 – Report on Domain Analysis of OSS Quality Attributes

5.2 The Core M3 Model

The definition of a model contains an "id" which defines the project/file for which the model is being
created. We then add the following relations to the core model.

• Declarations. The declarations relation maps declared language elements to their physical
location in a file.
• Uses. The uses relation maps uses of declared elements to their physical location in a file.
• Containment. The containment relation maps the elements that logically contain other elements

to define a structure. For example, in Java files contain classes, classes contain fields and methods
etc.
• Names. The names relation maps a declared name of an element to the qualified name that the

compiler uses to uniquely identify it.
• Documentation. The documentation relation contains comments that are mapped to the to a

physical location in a file.

The model also contains a list to store compiler generated error/warning messages.

5.3 The Core M3 Model in Rascal

The core relations of the M3 model are represented by a central (empty) model (M3) to which the
relevant relations are attached (using Rascal’s annotation operator @):

• M3@declarations: maps declarations to where they are declared. contains any kind of data or
type or code declaration (classes, fields, methods, variables, etc. etc.).
• M3@types: assigns types to declared source code artifacts.
• M3@uses: maps source locations of usages to the respective declarations.
• M3@containment: what is logically contained in what else (not necessarily physically, but

usually also).
• M3@messages: error messages and warnings produced while constructing a single M3 model.
• M3@names: convenience mapping from logical names to end-user readable (GUI) names, and

vice versa.
• M3@documentation: comments and javadoc attached to declared things
• M3@modifiers: modifiers associated with declared things.

The definition of the M3 Core Model in Rascal:

data M3 = m3(loc id);

anno rel [loc name, loc src] M3@declarations;

anno rel [loc src, loc name] M3@uses;

anno rel [loc from, loc to] M3@containment;

anno list [Message messages] M3@messages;

anno rel [str simpleName, loc qualifiedName] M3@names;

Page 22 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

anno rel [loc definition, loc comments] M3@documentation;

The core model will only contain facts that are language independent. In addition to these basic facts
that we expect to encounter in any type of programming language, we can easily add new relations to
the model to incorporate any language independent facts we may find.

5.4 Language Specific M3 Model

Each language we provide support for in the OSSMETER platform will have it own M3 model. The
language specific model will add new relations to the Core M3 model that will be relevant for metric
calculation. As an example we provide Java M3 Model.

5.4.1 M3 Java Model

The M3 Java Model extends the M3 Core Model and adds the following Java-specific relations:

• Extends. Contains the extends relation in Java between classes/interfaces.
• Implements. Contains the implements relation between classes and interfaces.
• MethodInvocations. Contains all the methods that are called from a method.
• FieldAccess. Contains any access to a Java field from anywhere in the source code.
• TypeDependency. Contains all the types that a Java element depends on.
• MethodOverrides. Contains the relations between methods and the methods that they override.

5.4.2 The M3 Java Model in Rascal

The M3 Core Model is extended with the following Java-specific relations:

• M3@extends: classes extending classes and interfaces extending interfaces.
• M3@implements: classes implementing interfaces.
• M3@methodInvocation: methods calling each other (including constructors).
• M3@fieldAccess: code using data (like fields).
• M3@typeDependency: using a type literal in some code (types of variables, annotations).
• M3@methodOverrides: which method override which other methods

The definition of the M3 Java Model in Rascal:

extend m3::Core;

anno rel [loc from, loc to] M3@extends;

anno rel [loc from, loc to] M3@implements;

anno rel [loc from, loc to] M3@methodInvocation;

anno rel [loc from, loc to] M3@fieldAccess;

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 23

D3.1 – Report on Domain Analysis of OSS Quality Attributes

anno rel [loc from, loc to] M3@typeDependency;

anno rel [loc from, loc to] M3@methodOverrides;

An extract of the M3 model for a sample Java project can be found in Appendix A.

5.5 Metrics based on M3 model

The advantage of the metrics based on the M3 model are two fold:

• Metric calculation is abstracted to a higher level and becomes language independent.
• We can change the granularity of the source code facts with ease. The M3 model can be created

for a file, folder, project or any combination of these as required and the metric calculation will
not need to change.

For use in the OSSMETER project, the platform (WP5) will host all the implemented metrics. The
platform contains a Rascal interpreter that will first calculate the M3 model for each project and then
pass the model to all the metrics available in its store. Each metric will be identified to the platform
using URI’s of the form "metrics://module/metric", where "module" will be the Rascal module
where the metric definition is present and "metric" the name of the Rascal function of the metric. The
scheme has been chosen as "metrics" for now but may change in the future to represent metric types
like "oometrics" for example. This approach allows the users with an easy means to implement their
own metric. The user will only need to accept the M3 model (if needed), perform the tasks in the
function and return the result back to the interpreter which will store it accordingly. The users only
need to focus on what data the metric needs from the model and how it is calculated.

5.5.1 Metric Implementation

Metrics will be implemented as functions in Rascal. Each metric will need to accept the M3 model for
which the metric is to be calculated as an argument. The process of implementing a metric consists of
extracting relevant information from the model, analyzing the information and reporting the calculated
values.

5.5.2 Examples of some metric implementations

In this section, we present some metrics that we have calculated using the M3 model. These metrics
are already useful in their own right, but should primarily be seen as illustration how well the M3
model can provide the basic data for metrics calculations.

5.5.2.1 Number of Methods
The number of methods (NOM) metric is simply a count of the methods that are declared in classes.
In order to calculate this metric using the M3 model, we first extract the information relevant to this

Page 24 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

metric i.e., relations which specify which classes define which methods using the convenience function
declaredMethods, convert the relations into a map with the class names as the key and return a map
which contains the count with the class names as key and the NOM as its value.

This metric counts all metrics related to the NOM metric like number of public method, number of
private methods. We only require to pass the set of modifiers that we are interested in as a parameter
to get only the count for those methods. If the modifiers parameter is an empty set, we get the NOM
metric.

public map [loc , int] NOM(M3 model, set [Modifier] modifiers = {}) {

classMethods = declaredMethods(model, checkModifiers = modifiers);

classMethodsMap = toMap(classMethods);

return (class : size(classMethodsMap[class]) | class <- classMethodsMap);

}

5.5.2.2 Lines of code
The following lines of code (LOC) metrics are supported by the model. These are all convenience
functions that iterate through all the physical files used to create the model, count their respective LOC
and sum them up to return the result. For each of the LOC metric, we use the convenience function
files which extracts physical file locations from a model.

• Physical lines of code: Counts all the lines in the source files.

int countProjectTotalLoc(M3 model) =

(0 | it + countFileTotalLoc(model, cu) | cu <- files(model));

• Commented lines of code: Counts only the lines in comments.

int countProjectCommentedLoc(M3 model) =

(0 | it + countCommentedLoc(model, cu) | cu <- files(model));

• Empty lines of code: Count only empty lines.

int countProjectEmptyLoc(M3 model) =

(0 | it + countEmptyLoc(model, cu) | cu <- files(model));

• Source lines of code: Counts all lines except the commented and empty lines

int countProjectSourceLoc(M3 model) =

countProjectTotalLoc(model) - countProjectCommentedLoc(model) -

countProjectEmptyLoc(model);

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 25

D3.1 – Report on Domain Analysis of OSS Quality Attributes

• Physical lines of code per language: Counts all lines in the source files and classisfies them
according to their proramming language. The languages are determined from the scheme of
each file.

map [str language, int count] countTotalLocPerLanguage(M3 model) {

map [str , int] result = ();

for (cu <- files(model)) {

str lang = split("+" , cu.scheme)[0];

result[lang] ? 0 += countFileTotalLoc(model, cu);

}

return result;

}

• Source lines of code per language: Counts source lines and classifies them according to their
programming language.

map [str language, int count] countSourceLocPerLanguage(M3 model) {

map [str , int] result = ();

for (cu <- files(model)) {

str lang = split("+" , cu.scheme)[0];

result[lang] ? 0 += countSourceLoc(model, cu);

}

return result;

}

5.5.3 Assessment

The goal of creating the M3 model was to make metric calculation easy and generic. For each metric
we want to calculate, we pass it the full M3 model. It is up to the metric to decide what information it
requires from the model to calculate its value.

The number of methods (NOM) metric example provided above can be used as a case to understand
how metric calculation becomes generic. As we can see, the NOM metric first queries the model and
extracts relations which map methods to the classes they are defined in. In object oriented languages
where this type of relation exists, we would receive the mapping. In case the model was created for
a non-object oriented language, we would receive an empty set here and the metric would return an
empty map signifying that the NOM metric doesn’t apply to the model.

The model is also easily extensible, with changes being localized. If we need to add support for a
language, we extend the core for that language and any metric that applies to the language will be
calculated. If we need to add support for a new metric, the metric needs only ask the information it
requires from the model and it becomes available to all languages.

Page 26 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Figure 8: Overview of the RASCAL visualization library.

6 Visualization

The mapping of source code facts to relations in the M3 model can be easily visualized using RASCAL’s
visualization libraries. In this section, we present – as a proof-of-concept – two visualizations created
using the M3 model and the RASCAL visualization library. We expect that in later deliverables we
will also explore web-based visualizations.

6.1 The Rascal Visualization Library

The RASCAL visualization library [8] has as aim to provide a software visualization framework that:

• enables non-experts to easily create, combine, extend and reuse interactive software visualiza-
tions;
• integrates seamlessly with existing techniques for software analysis (parsing, pattern matching,

tree traversal, constraint solving) and software transformation (rewriting, string templates).

Our main objective is to liberate the creator of visualizations from many low-level chores, such as
programming of explicit coordinates, mapping metrics related to software properties to sizes of shapes
and figures, and to provide high-level features instead, like figure composition, fully automatic figure
placement and symbolic links between visualizations elements. Since RASCAL already provides
excellent facilities for software analysis and transformation, the main challenge is therefore to provide
a software visualization framework that integrates well with and provides full access to what RASCAL
has to offer. The contributions of this library can be summarized as follows:

• A compositional, coordinate-free, visualization framework that provides primitives for drawing
elementary shapes and composite figures.
• Mechanisms to associate numeric scales with arbitrary figures.
• The first attempt we are aware of to decompose charts into reusable primitives.
• The integration of this framework with the RASCAL language and infrastructure thus creating a

true "One-Stop-Shop" for software analysis, transformation and visualization.
• An analysis of the software visualization domain that can form the basis for a domain-specific

language for software visualization.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 27

D3.1 – Report on Domain Analysis of OSS Quality Attributes

The technical architecture of our visualization framework is shown in Figure 8. The given Software
& Meta-Data is first parsed and then relevant analyses are performed (Parsing & Analysis). Parsing
and analysis can be completely defined and arbitrary languages and data formats can therefore be
parsed and analyzed. The analysis results are then turned into a figure (Visualization) and the result
is an instance of the Figure data type, an ordinary RASCAL datatype that is used to represent our
visualizations. Note, for later reference, that another data type, FProperty, is used to represent all
possible visual properties of Figures. Figures are interpreted by a render function that transforms them
in an actual on-screen display with which the user can interact. There is two-way communication
between visualization and user: the visualization functions create a figure that is shown to the user,
but this figure may contain call backs (RASCAL functions) that can be activated by user actions like
pointing, hovering, selecting or scrolling.

6.2 Examples of Metrics Visualizations

Creating a visualization always consists of the following steps:

• Transform the given source code or metrics data into a value of type Figure.
• Display this Figure value on the screen using the render function.

A Figure can be composed of:

• Primitive figures like text, outline, box and ellipse.
• Basic composition operators like hcat (horizontal composition), vcat (vertical composition),

overlay (superposition), and grid (placement in a rectangular grid).
• Advanced composition operators like pack (bin packing in minimal space), graph (hierarchical

or spring-like graph), tree (tree structure), and treemap (treemap).
• Properties like lineWidth, lineColor, fillColor, and alignment (halign, valign), spacing

(gap, hgap, vgap) and relative size (grow, shrink). Properties are also used to describe interac-
tive aspects of a visualization. For instance onMouseEnter defines a call-back function to be
called when the mouse enters this specific figure element.

6.2.1 Visualizing a Type Hierarchy

In Figure 9, we visualize the type hierarchy of a sample Java program (the same programs whose M3
Model is given in Appendix A) as a tree. The light blue circles represent classes and dark blue circles
represent interfaces. The top of the hierarchy represent the Java Object class. The RASCAL code to
create this visualization is shown in Figure 10.

6.2.2 Visualizing the Structure of a Java Program

In Figure 11, we visualize the complete structure of the same Java program as a graph. The various
language elements are color-coded as described in the legend. The RASCAL code to create this
visualization is shown in Figure 12.

Page 28 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Figure 9: Type hierarchy for a sample Java program visualized as tree.

public void visualizeAsTree(rel [loc , loc] classRels, loc rootNode) {

list [Figure] called = [];

list [Figure] callers = [];

treeRoot = ellipse(size(10), fillColor(color(getColor(rootNode.scheme))),

onMouseEnter(void () {output = toString(rootNode);}));

for (root <- successors(classRels, rootNode)) {

called += addTreeNode(root, classRels, true);

}

for (root <- predecessors(classRels, rootNode)) {

callers += addTreeNode(root, classRels, false);

}

t2 = vcat([box(text(str () {return output;}), shrink(0.25, 0.1), left(), top()),

tree(treeRoot,

[tree(ellipse(size(10), fillColor(color("black" , 0.5)),

onMouseEnter(void () { output = "children" ; })), called),

tree(ellipse(size(10), fillColor(color("black" , 0.5)),

onMouseEnter(void () { output = "parents" ; })), callers)

], left())], vgap(20), std(left()), std(hgap(10)), std(vgap(20)));

render(t2);

}

Figure 10: Source code for Figure 9.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 29

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Figure 11: A complete Java program visualized as a graph.

public void visualizeAsSpring(rel [loc , loc] classRels, loc root) {

classRels = getSubGraph(classRels, root);

Figures nodes = [];

list [Edge] edges = [];

for (nodeLoc <- carrier(classRels))

if (nodeLoc == root) {

nodes += [ellipse(id(getID(nodeLoc)), size(10, 10),

fillColor(color(getColor(nodeLoc.scheme), 0.5)))];

} else {

nodes += [ellipse(id(getID(nodeLoc)), size(10, 10),

fillColor(color(getColor(nodeLoc.scheme), 0.5)))];

}

for (<relLHS, relRHS> <- classRels) {

edges += [edge(getID(relLHS), getID(relRHS))];

}

render(hcat([graph(nodes, edges, hint("spring"), size(1000))]));

}

Figure 12: Source code for Figure 11.

Page 30 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Expected Compliance Description
Full Compliance Full compliance is expected.
Partial Compliance/Not yet known Partial compliance is expected or expected compliance is not

yet known.
No Compliance No compliance is expected.

Table 5: Coding scheme for expected requirement compliance.

7 Expected Compliance with OSSMETER Requirements

Given the domain analysis in the previous sections, we can now summarize the requirements on WP3
and give our assessment how well these requirements can eventually be met. We use the coding
scheme shown in Table 5.

The requirements for WP 3 are as follows:

ID Requirement Priority Expected compliance
13 Metrics for software quality shall be

defined that are independent of any pro-
gramming language (language-agnostic
metrics).

SHALL Full Compliance

14 Fact extractors shall be available that
extract from source code the facts that
are needed for computing language-
agnostic metrics.

SHALL Full Compliance

15 Language-specific metrics for software
quality shall be defined for Java.

SHALL Full Compliance

16 The facts needed to compute language-
specific metrics for Java shall be ex-
tracted.

SHALL Full Compliance

17 Language-specific metrics for software
quality may be defined for other lan-
guages (PHP, Python, C).

MAY Partial Compliance/Not yet known. We
plan to define PHP metrics.

18 The facts needed to compute language-
specific metrics for other languages
(PHP, Python, C) may be extracted.

MAY Partial Compliance/Not yet known. We
plan to extract PHP metrics.

19 Calculation of software quality metrics
should, where possible, be the same
across all languages and paradigms.

SHOULD Full Compliance

20 Development activity shall be mea-
sured by the number of committed
changes.

SHALL Full Compliance

21 Development activity shall be mea-
sured by the size of committed changes.

SHALL Full Compliance

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 31

D3.1 – Report on Domain Analysis of OSS Quality Attributes

22 Development activity may be measured
by the distribution of active committers.

MAY Full Compliance

23 Development activity may be measured
by the ratio between old and new com-
mitters.

MAY Full Compliance

24 History of some metrics should be cap-
tured to summarize quality evolution
during development.

SHOULD Full Compliance

25 A model shall be designed to represent
quality and activity metrics.

SHALL Full Compliance

34 Provide a rating of the quality of code
comments of the OSS project

SHALL Partial Compliance/Not yet known. We
have not yet investigated how to define
such a metric.

35 Provide a well-structured code index
for the OSS project

SHALL Full Compliance

36 Provide a rating of the use of advanced
language features for the OSS project

SHOULD Full Compliance. The list of such fea-
tures still has to be designed.

37 Provide a rating of the use of testing
cases for the OSS project

SHALL Partial Compliance/Not yet known. In
principle, test cases have to be executed
to determine this. We have to explore
how a weaker, but meaningful, metric
can be defined.

38 Provide an indicator of the possi-
ble bugs from empty try/catch/final-
ly/switch blocks for the OSS project

SHALL Full Compliance

39 Provide an indicator of the dead code
from unused local variables, parame-
ters and private methods for the OSS
project

SHALL Partial Compliance/Not yet known. Ex-
haustive dead code detection requires
costly data flow analysis; we still have
to decide whether this is feasible or that
an approximation will be used instead.

40 Provide an indicator of the empty
if/while statements for the OSS project

SHALL Full Compliance

41 Provide an indicator of overcompli-
cated expressions from unnecessary if
statements and for loops that could be
while loops for the OSS project

SHALL Full Compliance

42 Provide an indicator of suboptimal
code from wasteful String/StringBuffer
usage for the OSS project

SHALL Partial Compliance/Not yet known.
The precise definition of ’wastefull" is
still to be determined. This determines
the achievable compliance.

43 Provide an indicator of duplicate code
by detecting copied/pasted code for the
OSS project

SHALL Full Compliance

Page 32 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

44 Provide an indicator of the use of
Javadoc comments for classes, at-
tributes and methods for the OSS
project

SHALL Full Compliance

45 Provide an indicator of the use of the
naming conventions of attributes and
methods for the OSS project

SHALL Full Compliance

46 Provide an indicator of the limit of the
number of function parameters and line
lengths for the OSS project

SHALL Full Compliance

47 Provide an indicator of the presence of
mandatory headers for the OSS project

SHALL Partial Compliance/Not yet known.
The implications of this requirements
have to be further explored.

48 Provide an indicator of the use of pack-
ets imports, of classes, of scope modi-
fiers and of instructions blocks for the
OSS project

SHALL Full Compliance

49 Provide an indicator of the spaces be-
tween some characters for the OSS
project

SHALL Partial Compliance/Not yet known.
The implications of this requirements
have to be further explored.

50 Provide an indicator of the use of good
practices of class construction for the
OSS project

SHALL Partial Compliance/Not yet known.
The implications of this requirements
have to be further explored.

51 Provide an indicator of the use of mul-
tiple complexity measurements, among
which expressions for the OSS project

SHALL Full Compliance.

52 Provide an indicator of the cyclomatic
complexity for the OSS project

SHALL Full Compliance

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 33

D3.1 – Report on Domain Analysis of OSS Quality Attributes

8 Summary, Conclusions and Future Work

8.1 Summary

In this deliverable we have obtained the following results:

• In Section 2 we have explored how to design a quality model for OSSMETER.
• In Section 3 we have described essential quality attributes for OSS projects.
• In Section 3 we have also described our initial selection of metrics for measuring these quality

attributes. This section also presents a brief tool survey.
• In Section 4 we have given a quick overview of the RASCAL meta-programming language that

will be used for fact extraction and metric calculation.
• In Section 5 we have described M3 (Metrics Meta-Model) that we have designed for representing

facts and metrics in OSSMETER. The core M3 model and an extension for Java have been
presented.
• In Section 6 we have briefly illustrated the possibilities for visualizing facts and metrics that are

stored in an M3 model.
• In Section 7 we have summarized the compliance of the solutions proposed in this deliverable

with the overall OSSMETER requirements.

8.2 Answers to Questions in Workplan

In the workplan for Task 3.1 several questions were raised. Here we summarize how these questions
have been answered in this deliverable.

8.2.1 Which source code and version management attributes are most relevant for tracking
the quality of OSS projects?

This question has been answered in Section 3.

8.2.2 What are the observable effects of these attributes in the source code and the version
management system?

This question has been answered in Section 3.

8.2.3 How can these attributes be measured?

This question has been answered in Section 3.

Page 34 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

8.2.4 What are the costs of measurement tools for each metric (= cost of measurement imple-
mentation)?

There are severals costs involved here:

• The costs of including a new tool in the platform.
• The costs of solving incompatibilities in metric calculation between different tools.
• The costs of actually implementing a new metric.

As we have argued in Section 4, these costs are high and we propose to reduce them by relying on a
common implementation of all metrics in the meta-programming language RASCAL. This leads to as
much uniformity and reuse as possible. Initial experience shows that, once the M3 model is in place,
metrics calculation becomes much cheaper using this approach. We only give qualitative arguments to
support this choice.

8.2.5 What are the tradeoffs between accuracy and efficiency for each metric? (= cost of
measurement application?)

We have not specifically addressed this question since it can only be answered given specific metrics.
We will report on this in the next deliverable.

8.2.6 What tools (existing or new) are needed to provide the required measurements?

As we have argued in Section 4, the existing tools and metrics combination do not adequately form
a cost effective solution for OSSMETER, thus we propose to use RASCAL to provide the required
measurements.

8.3 Conclusions and Future Work

We can conclude that the objectives for this deliverable as sketched in Sections 1 and 1.1 have been
met by the design and experiments described here. We believe that we have created a flexible and
versatile foundation for representing extracted facts and computing metrics.

However, this foundation has to be turned into a practically usable infrastructure by the following
future steps:

• Integration with the MongoDB-based infrastructure provided by WP5. The integration of the
proof of concept metrics with the WP5 infrastructure is under way. This should provide us with
an idea of the information that WP5 must provide WP3 with.
• Assessment of performance and identifying opportunities for optimization.
• Experimentation with the already implemented metrics.
• Implementation of new metrics.
• Creation of new M3 models for new languages like, for instance, PHP.
• Experimentation on the presentation of the metrics data to the users.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 35

D3.1 – Report on Domain Analysis of OSS Quality Attributes

• Exploration of the possible visualizations (of source facts and in some cases metrics).
• Experimentation on the possibility of creating threshold values for the quality of open source

projects.

Page 36 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

References

[1] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press/Addison-
Wesley, 1989.

[2] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493, 1994.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn Talcott. Maude Manual (Version 2.4). SRI International, Menlo Park,
CA, October 2008. Revised February 2009.

[4] F. Brito e Abreu. The mood metrics set. ECOOP 95 Workshop on Metrics, 1995.

[5] N. Fenton and M. Neil. Software metrics: Successes, failures, and new directions. Journal of
Systems and Software, 47:149–157, 1999.

[6] N.E. Fenton. Software Metrics, A Rigorous Approach. Chapman & Hall, 1991.

[7] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainability. In Interna-
tional Conference on the Quality of Information and Communications Technology (QUATIC’07),
pages 30–39, 2007.

[8] Paul Klint, Bert Lisser, and Atze van der Ploeg. Towards a one-stop-shop for analysis, transfor-
mation and visualization of software. In Anthony M. Sloane and Uwe Aßmann, editors, SLE,
volume 6940 of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

[9] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation. In Proceedings of SCAM’09, pages 168–177. IEEE,
2009.

[10] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming with Rascal. In
Post-proceedings of GTTSE’09, volume 6491 of LNCS, pages 222–289. Springer, 2011.

[11] Adrian Kuhn and Toon Verwaest. FAME, a polyglot library for metamodeling at runtime. In
Workshop on Models at Runtime, pages 57–66, 2008.

[12] M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice Hall, 1994.

[13] T.J. McCabe. A complexity measure. IEEE Trans. Software Eng., SE-2:308–320, 1976.

[14] S. Demeyer S. Tichelaar, S. Ducasse and O. Nierstrasz. A meta-model for language-independent
refactoring. In Proc. Int’l Sym. Principles of Software Evolution, pages 157–169. IEEE Computer
Society, 2000.

[15] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos. The sqo-oss quality model: measurement
based open source software evaluation. In Proceedings of the International Conference on Open
Source Systems 2008, Open Source Development, Communities and Quality, pages 237–248,
2008.

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 37

D3.1 – Report on Domain Analysis of OSS Quality Attributes

[16] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza. A relational approach to software metrics. In
Proceedings of the Software Applied Computing (SAC’2004), pages 1536–1540, March 2004.

[17] Jeremy Singer, Gavin Brown, Mikel Lujn, Adam Pocock, and Paraskevas Yiapanis. Fundamental
nano- patterns to characterize and classify java methods. In Electronic Notes in Theoretical
Computer Science, Proceedings of the Ninth Workshop on Language Descriptions Tools and
Applications (LDTA 2009), pages 191–204, 2010.

[18] M.G.J. van den Brand, M. Bruntink, G.R. Economopoulos, H.A. de Jong, P. Klint, T. Kooiker,
T. van der Storm, and J.J. Vinju. Using The Meta-environment for Maintenance and Renovation.
In Proceedings of CSMR’07, pages 331–332. IEEE, 2007.

[19] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF
Meta-Environment: a Component-Based Language Development Environment. In R. Wilhelm,
editor, Proceedings of CC ’01, volume 2027 of LNCS, pages 365–370. Springer, 2001.

[20] Eva van Emden and Leon Moonen. Java quality assurance by detecting code smells. In In
Reverse Engineering, 2002. Proceedings. Ninth Working Conference, pages 97–106, 2002.

Page 38 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

Appendix A An extract of the M3 model for a Java program

Here we present a concrete instance of an M3 Java Model and show an extract of the M3 representation
of a small Java project. Later, in Section 6, we will use this same project to generate the visualizations
in Figures 9 and 11. The listing only provides partial information of all the relations.

The first line defines the model that we are creating. In this case, it states that we are creating the M3
model for the project P2SnakesLadders. Each relation available to the model starts with "@" in the
text like @fieldAccess or @extends.

If we look at a single tuple in the relation extends, say

< |java+class://P2SnakesLadders/snakes/Snake|,

|java+class://P2SnakesLadders/snakes/Ladder| >

we interpret it as follows: there is a class Snake in package snakes in project P2SnakesLadders that
extends Ladder in the same package of the same project.

m3(|project://P2SnakesLadders|)[

@fieldAccess={

<|java+method://P2SnakesLadders/snakes/Player/moveForward(int)|,|java+field://

P2SnakesLadders/snakes/Player/square|>,

<|java+method://P2SnakesLadders/snakes/Square/previousSquare()|,|java+field://

P2SnakesLadders/snakes/Square/position|>,

<|java+method://P2SnakesLadders/snakes/SimpleGameTest/initialStrings(snakes.

Game)|,|java+field://P2SnakesLadders/snakes/SimpleGameTest/jack|>,

<|java+method://P2SnakesLadders/snakes/Game/currentPlayer()|,|java+field://

P2SnakesLadders/snakes/Game/players|>,

<|java+variable://P2SnakesLadders/snakes/Die/roll()/result|,|java+field://

P2SnakesLadders/snakes/Die/FACES|>

...},

@extends={

<|java+class://P2SnakesLadders/snakes/Snake|,|java+class://P2SnakesLadders/

snakes/Ladder|>,

<|java+class://P2SnakesLadders/snakes/FirstSquare|,|java+class://

P2SnakesLadders/snakes/Square|>,

<|java+class://P2SnakesLadders/snakes/LastSquare|,|java+class://P2SnakesLadders

/snakes/Square|>,

<|java+class://P2SnakesLadders/snakes/Ladder|,|java+class://P2SnakesLadders/

snakes/Square|>

},

@methodInvocation={

<|java+method://P2SnakesLadders/snakes/SimpleGameTest/move1jack(snakes.Game)|,|

java+method://P2SnakesLadders/org/junit/Assert/assertEquals(java.lang.Object

,java.lang.Object)|>,

<|java+method://P2SnakesLadders/snakes/Game/play(snakes.Die)|,|java+method://

P2SnakesLadders/snakes/Game/winner()|>,

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 39

D3.1 – Report on Domain Analysis of OSS Quality Attributes

<|java+method://P2SnakesLadders/snakes/Game/setSquare(int,snakes.ISquare)|,|

java+method://P2SnakesLadders/snakes/Game/getSquare(int)|>,

<|java+method://P2SnakesLadders/snakes/Player/moveForward(int)|,|java+method://

P2SnakesLadders/snakes/ISquare/leave(snakes.Player)|>,

<|java+method://P2SnakesLadders/snakes/Player/wins()|,|java+method://

P2SnakesLadders/snakes/ISquare/isLastSquare()|>

...},

@typeDependency={

<|java+method://P2SnakesLadders/snakes/SimpleGameTest/move6jill(snakes.Game)|,|

java+interface://P2SnakesLadders/ch/unibe/jexample/Given|>,

<|java+variable://P2SnakesLadders/snakes/DieTest/reached(int)/i|,|java+

primitiveType://P2SnakesLadders/int|>,

<|java+method://P2SnakesLadders/snakes/DieTest/testInRange()|,|java+interface

://P2SnakesLadders/org/junit/Test|>,

<|java+field://P2SnakesLadders/snakes/Game/winner|,|java+class://

P2SnakesLadders/snakes/Player|>,

<|java+variable://P2SnakesLadders/snakes/SimpleGameTest/newGame()/args|,|java+

array://P2SnakesLadders/snakes/Player%5B%5D|>

...},

@messages=[],

@containment={

<|java+method://P2SnakesLadders/snakes/SimpleGameTest/newGame()|,|java+variable

://P2SnakesLadders/snakes/SimpleGameTest/newGame()/game|>,

<|java+class://P2SnakesLadders/snakes/Snake|,|java+method://P2SnakesLadders/

snakes/Snake/squareLabel()|>,

<|java+class://P2SnakesLadders/snakes/Player|,|java+method://P2SnakesLadders/

snakes/Player/toString()|>,

<|java+package://P2SnakesLadders/snakes|,|java+compilationUnit://

P2SnakesLadders/src/snakes/ISquare.java|>,

<|java+class://P2SnakesLadders/snakes/FirstSquare|,|java+field://

P2SnakesLadders/snakes/FirstSquare/players|>

...},

@names={

<"move8jillWins",|java+method://P2SnakesLadders/snakes/SimpleGameTest/

move8jillWins(snakes.Game)|>,

<"java",|java+package://P2SnakesLadders/java|>,

<"square",|java+variable://P2SnakesLadders/snakes/Game/addSquares(int)/square

|>,

<"position",|java+parameter://P2SnakesLadders/snakes/Game/setSquareToSnake(int,

int)/position|>,

<"out",|java+field://P2SnakesLadders/java/lang/System/out|>

...},

@implements={<|java+class://P2SnakesLadders/snakes/Square|,|java+interface://

P2SnakesLadders/snakes/ISquare|>},

Page 40 Version 1.0
Confidentiality: Public Distribution

21 October 2013

D3.1 – Report on Domain Analysis of OSS Quality Attributes

@documentation={

<|java+compilationUnit://P2SnakesLadders/src/snakes/Game.java|,|project://

P2SnakesLadders/src/snakes/Game.java|(3200,53,<130,41>,<130,94>)>,

<|java+compilationUnit://P2SnakesLadders/src/snakes/Game.java|,|project://

P2SnakesLadders/src/snakes/Game.java|(1426,23,<62,30>,<62,53>)>,

<|java+compilationUnit://P2SnakesLadders/src/snakes/Game.java|,|project://

P2SnakesLadders/src/snakes/Game.java|(1594,54,<70,2>,<70,56>)>,

<|java+compilationUnit://P2SnakesLadders/src/snakes/Game.java|,|project://

P2SnakesLadders/src/snakes/Game.java|(3310,42,<132,23>,<132,65>)>,

<|java+compilationUnit://P2SnakesLadders/src/snakes/Game.java|,|project://

P2SnakesLadders/src/snakes/Game.java|(709,4,<33,0>,<33,4>)>

...},

@uses={

<|project://P2SnakesLadders/src/snakes/DieTest.java|(444,7,<26,13>,<26,20>),|

java+method://P2SnakesLadders/snakes/DieTest/reached(int)|>,

<|project://P2SnakesLadders/src/snakes/Game.java|(1470,4,<63,20>,<63,24>),|java

+method://P2SnakesLadders/snakes/Player/wins()|>,

<|project://P2SnakesLadders/src/snakes/DieTest.java|(307,5,<15,43>,<15,48>),|

java+field://P2SnakesLadders/snakes/Die/FACES|>,

<|project://P2SnakesLadders/src/snakes/SimpleGameTest.java

|(2668,4,<96,18>,<96,22>),|java+field://P2SnakesLadders/snakes/

SimpleGameTest/jack|>,

<|project://P2SnakesLadders/src/snakes/Square.java|(728,10,<38,14>,<38,24>),|

java+method://P2SnakesLadders/snakes/Square/isOccupied()|>

...},

@methodOverrides={

<|java+method://P2SnakesLadders/snakes/FirstSquare/isOccupied()|,|java+method

://P2SnakesLadders/snakes/Square/isOccupied()|>,

<|java+method://P2SnakesLadders/snakes/Player/toString()|,|java+method://

P2SnakesLadders/java/lang/Object/toString()|>,

<|java+method://P2SnakesLadders/snakes/FirstSquare/leave(snakes.Player)|,|java+

method://P2SnakesLadders/snakes/ISquare/leave(snakes.Player)|>,

<|java+method://P2SnakesLadders/snakes/FirstSquare/isFirstSquare()|,|java+

method://P2SnakesLadders/snakes/ISquare/isFirstSquare()|>,

<|java+method://P2SnakesLadders/snakes/Square/landHereOrGoHome()|,|java+method

://P2SnakesLadders/snakes/ISquare/landHereOrGoHome()|>

...},

@modifiers={

<|java+constructor://P2SnakesLadders/snakes/Snake/Snake(int,snakes.Game,int)|,

public()>,

<|java+field://P2SnakesLadders/snakes/Game/size|,private()>,

<|java+constructor://P2SnakesLadders/snakes/Ladder/Ladder(int,snakes.Game,int)

|,public()>,

<|java+method://P2SnakesLadders/snakes/Square/moveAndLand(int)|,public()>,

21 October 2013 Version 1.0
Confidentiality: Public Distribution

Page 41

D3.1 – Report on Domain Analysis of OSS Quality Attributes

<|java+method://P2SnakesLadders/snakes/Ladder/destination()|,protected()>

...},

@declarations={

<|java+class://P2SnakesLadders/snakes/LastSquare|,|project://P2SnakesLadders/

src/snakes/LastSquare.java|(17,180,<3,0>,<13,1>)>,

<|java+method://P2SnakesLadders/snakes/Square/landHereOrGoHome()|,|project://

P2SnakesLadders/src/snakes/Square.java|(678,94,<37,1>,<39,2>)>,

<|java+parameter://P2SnakesLadders/snakes/Game/play(snakes.Die)/die|,|project

://P2SnakesLadders/src/snakes/Game.java|(733,7,<35,18>,<35,25>)>,

<|java+field://P2SnakesLadders/snakes/Game/winner|,|project://P2SnakesLadders/

src/snakes/Game.java|(241,6,<12,16>,<12,22>)>,

<|java+method://P2SnakesLadders/snakes/Game/invariant()|,|project://

P2SnakesLadders/src/snakes/Game.java|(252,115,<14,1>,<18,2>)>

...}

]

Page 42 Version 1.0
Confidentiality: Public Distribution

21 October 2013

	Introduction
	Outline of Deliverable 3.1

	Towards a Software Quality Model
	The ISO/IEC 9126-1:2001 quality model
	Other Quality Attributes
	Requirements for OSSMETER quality attributes

	OSS Quality Model Attributes & Metrics
	Attributes Defining Quality of OSS Projects
	Source Code Attributes
	Activity Attributes

	Common metrics for measuring quality attributes
	Presentation of Metrics
	Tool Survey
	Outcome of the tool survey

	The Rascal Meta-Programming Language
	The Needs of OSSMETER
	Origins
	Quick Overview
	Simple Examples
	Some Enabling Rascal Features in More Detail
	Type Literals
	Source Locations
	String Templates and Concrete Syntax Templates
	Rascal-to-Java Bridge

	Metrics Meta Model (M3)
	Architecture
	The Core M3 Model
	The Core M3 Model in Rascal
	Language Specific M3 Model
	M3 Java Model
	The M3 Java Model in Rascal

	Metrics based on M3 model
	Metric Implementation
	Examples of some metric implementations
	Number of Methods
	Lines of code

	Assessment

	Visualization
	The Rascal Visualization Library
	Examples of Metrics Visualizations
	Visualizing a Type Hierarchy
	Visualizing the Structure of a Java Program

	Expected Compliance with OSSMETER Requirements
	Summary, Conclusions and Future Work
	Summary
	Answers to Questions in Workplan
	Which source code and version management attributes are most relevant for tracking the quality of OSS projects?
	What are the observable effects of these attributes in the source code and the version management system?
	How can these attributes be measured?
	What are the costs of measurement tools for each metric (= cost of measurement implementation)?
	What are the tradeoffs between accuracy and efficiency for each metric? (= cost of measurement application?)
	What tools (existing or new) are needed to provide the required measurements?

	Conclusions and Future Work

	Appendix An extract of the M3 model for a Java program

