
1 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Importing and Exporting Data

Between Hadoop and MySQL

+

2 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

About me

 Sarah Sproehnle

 Former MySQL instructor

 Joined Cloudera in March 2010

 sarah@cloudera.com

3 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

What is Hadoop?

 An open-source framework for storing and processing data on a

cluster of computers

 Based on Google's whitepapers of the Google File System and

MapReduce

 Scales linearly (proven to scale to 1000s of nodes)

 Built-in high availability

 Designed for batch processing

 Optimized for streaming reads

4 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Why Hadoop?

 Lots of data (TB+)

 Need to scan, process or transform all data

 Complex and/or unstructured data

5 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Use cases for Hadoop

 Recommendation engine

– Netflix recommends movies

– last.fm recommends music

 Ad targeting, log processing, search optimization

– ContextWeb, eBay and Orbitz

 Machine learning and classification

– Yahoo! Mail's spam detection

– financial companies: identify fraud, credit risk

 Graph analysis

– Facebook, LinkedIn and eHarmony suggest connections

6 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Hadoop vs. MySQL

MySQL Hadoop

Data capacity TB+ (may require sharding) PB+

Data per query GB? PB+

Read/write Random read/write Sequential scans, Append-
only

Query language SQL Java MapReduce, scripting
languages, HiveQL

Transactions Yes No

Indexes Yes No

Latency Sub-second (hopefully) Minutes to hours

Data structure Structured Structured or un-structured

7 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

How does Hadoop work?

 Spreads your data onto tens, hundreds or thousands of

machines using the Hadoop Distributed File System (HDFS)

– Built-in redundancy (replication) for fault-tolerance

– Machines will fail!

– HDD MTBF 1000 days, 1000 disks = 1 failure every day

 Read and process data with MapReduce

– Processing is sent to the data

– Many "map" tasks each work on a slice of the data

– Failed tasks are automatically restarted on another node

8 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Why MapReduce?

 By constraining computation to “map” and “reduce” phases, the

tasks can be split and run in parallel

 Able to process huge amounts of data over thousands of

machines

 Scales linearly

 Programmer is isolated from individual failed tasks

– Tasks are restarted on another node

9 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The problem with MapReduce

 The developer has to worry about a lot of things besides the

analysis/processing logic (Job setup, InputFormat, custom

key/value classes)

 The data is schema-less

 Even simple things may require several MapReduce passes

 Would be more convenient to use constructs such as "filter",

"join", "aggregate"

 Solution: Hive

– SQL-like language on top of MapReduce

10 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example - word count

map(key, value)

 foreach (word in value)

 output (word, 1)

Key and value represent a row of data :
key is the byte offset, value is a line

Intermediate output:
 the, 1
 cat, 1
 in, 1
 the, 1
 hat, 1

11 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Reduce

reduce(key, list)

 sum the list

 output(key, sum)

Hadoop aggregates the keys and calls
reduce for each unique key:
 the, (1,1,1,1,1,1…1)
 cat, (1,1,1)
 in, (1,1,1,1,1,1) ...

Final result:
the, 45823
cat, 1204
in, 2693

…

12 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

So where does this fit in?

13 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example data pipeline

1. Use MySQL for real-time read/write data access (e.g., websites)

2. Cron job occasionally "Sqoops" data into Hadoop

3. Flume aggregates web logs and loads them into Hadoop

4. Use MapReduce to transform data, run batch analysis, join

data, etc

5. Export the transformed results to OLAP or OLTP environment

14 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sqoop: SQL-to-Hadoop

 Open source software

 Parallel import/export between Hadoop and various RDBMSes

 Default implementation is JDBC-based

 In Cloudera's Distribution including Apache Hadoop (CDH)

 Optimized for MySQL (built-in)

 Optimized connectors for Oracle, Netezza, Teradata (others

coming)

– Freely available at cloudera.com

15 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

How Sqoop works

16 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

"Sqooping" your tables into Hadoop

$ sqoop import --connect jdbc:mysql://foo.com/db

 --table orders

 --fields-terminated-by '\t'

 --lines-terminated-by '\n'

 This command will submit a Hadoop job that queries your

MySQL server at foo.com and reads rows from db.orders

 Resulting TSV files are stored in Hadoop's Distributed File

System

17 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Other features

 Other features :

– Choose which tables, rows (--where) or columns to import

– Configurable parallelization

– Specify the number of connections (--num-mappers)

– Specify the column to split on (--split-by)

– MySQL optimization (uses parallel mysqldump commands)

– LOBs can be inline or a separate file

– Incremental loads (with TIMESTAMP or AUTO_INCREMENT)

– Integration with Hive and HBase

18 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Exporting data

$ sqoop export --connect jdbc:mysql://foo.com/db

 --table bar

 --export-dir /hdfs_path/bar_data

 Target table must already exist

 Assumes comma-separated fields

– Use --fields-terminated-by and --lines-terminated-by

 Can use a staging table (--staging-table)

– Failed jobs can have unpredictable results otherwise

19 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sqoop + Hive

$ sqoop import --connect jdbc:mysql://foo.com/db

 --table orders

 --hive-import

 Hive is a component that sits on top of Hadoop to provide:

– A command-line interface for submitting HiveQL

– A metastore for putting table definitions on Hadoop data

By including --hive-import, Sqoop will
create a Hive table definition for the data

20 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Hive

$ hive

 hive> SHOW TABLES;

 ...

 hive> SELECT locationid, sum(cost) AS sales

 FROM orders

 GROUP BY locationid

 ORDER BY sales

 LIMIT 100;

21 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Demo

$ sqoop import --connect jdbc:mysql://localhost/world
--username root --table City --hive-import

$ sqoop import --connect jdbc:mysql://localhost/world
--username root --table Country --hive-import

$ hadoop fs -ls /user/hive/warehouse

$ hadoop fs -cat /user/hive/warehouse/city/*0 | more

$ hive

SHOW TABLES;

SELECT * FROM city LIMIT 10;

SELECT countrycode, sum(population) as people FROM city WHERE
population > 100000 GROUP BY countrycode
ORDER BY people DESC LIMIT 10;

SELECT code, sum(ci.population) as people FROM city ci JOIN
country co ON ci.countrycode = co.code WHERE continent =
'North America'
GROUP BY code ORDER BY people desc LIMIT 10;

22 Copyright © 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Thanks!

sarah@cloudera.com

