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D 5.4 Report on WCET-Oriented Optimizations

Executive Summary

This document describes the deliverable D5.4 Report on WCET-Oriented Optimizations of work
package 5 of the T-CREST project, due 24 months after project start as stated in the Description of
Work. The deliverable describes the compiler optimizations that use the Patmos specific hardware
features for time-predictable WCET improvement. We present the current state of the integration
of the compiler and the WCET analysis, which enables more precise WCET analyses as well as
WCET-driven code optimisations. We show how the feedback from the WCET analysis is used
to perform data cache optimisations and criticality-driven control flow optimisations such as block
placement and function splitting. Finally, we present code optimisations that are specific to the
Patmos hardware, such as stack cache control optimisations and scheduling for the Patmos instruction
set.
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1 Introduction

Optimising compilers aim at producing efficient code, traditionally either in terms of time or space.
Considering programs for hard real-time systems, optimisation targets are quite different. Time-
predictability is of utmost importance, and the performance is captured by the results of static timing
analysis rather than the average execution time measured for a set of benchmark executions.

In the initial project phase, we have identified several different aspects of time-predictability and the
generation of time-predictable code (cf. D1.1). One aspect is WCET analysability, which is a measure
of the complexity of the WCET analysis that reflects the effort required to produce a reasonably tight
WCET bound.

From a hardware perspective, high analysability is achieved by avoiding a hardware design that
employs features that are inherently difficult to analyse and by using easier-to-analyse alternatives
instead. Often, these alternatives require appropriate support from the compiler. A representative
example is a statically scheduled VLIW architecture instead of a superscalar processor with dynamic
scheduling.

A different means to achieve high analysability is to provide the timing analysis with additional
information. Even though the generated code is identical, the information leads to an improvement if
the analysis is able to use it to obtain a tighter WCET bound. This sort of information is potentially
available during compilation.

The flow of information in the other direction, namely from the analysis tool to the compiler, can
be exploited to direct optimisations that aim at reducing the WCET. This includes information from
value analysis and cache analysis, as well as information on the WCET of basic blocks, and their
execution frequency on the worst-case path.

A major challenge for feedback-driven optimization, and the compiler and WCET analysis tool in-
tegration in general, is that the code potentially changes in each optimization step. As the compiler
passes and the analysis tool thus operate on different program representations, mechanisms to trans-
form analysis results are needed.

In this document, we present how we address these issues, the integration of our solutions in the
compilation tool chain and an evaluation thereof. The rest of the document is structured as follows.
Section 2 describes how we improved the integration of compiler and WCET analysis to provide ad-
ditional information available in the compiler to the analysis tool. Section 3 outlines the optimisations
based on feedback from timing analysis. Optimisations using Patmos-specific hardware features are
dealt with in Section 4. Section 5 documents how we met the WP 5 requirements, and Section 6
concludes the discussion.
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2 Compiler – WCET Analysis Integration

We already have described the basic strategy for the integration of the compiler and the WCET anal-
ysis in Deliverable D5.3. We introduced a tool called platin to facilitate the information exchange
between the compiler and analysis tools. Compiler information, flow constraints and analysis results
are stored in a uniform manner using the PML file format [10].

Within the scope of Task 5.3, we have extended and improved this integration. While the focus
so far was on enabling WCET analysis within our compiler framework, we now have focussed on
improving the analysis results by providing more information to the analysis, both quantitatively and
qualitatively.

In this section, we first outline the technique used to relate different program representations. Then
we describe two kinds of information from the compiler which are processed and provided to the
timing analysis, evaluating their effects on the analysis results.

2.1 Relating Bitcode and Machinecode

During compilation, programs are transformed from source code to the compiler’s platform-
independent intermediate language, and subsequently to the target platform’s machine representation
and the linked binary file. Bitcode, LLVM’s platform-independent intermediate representation, was
designed with analyzability in mind and has thus become an attractive representation for program
analyses (e.g., [13]). As WCET analysis targets platform-specific machine code, however, it cannot
directly reuse results from program analyses operating at the bitcode level.

Therefore, a major challenge for the integration of compiler and WCET analysis is to establish a
link between different representations of the same program. Establishing such relations is not only
crucial for the reuse of existing knowledge about the program, but also helpful to use WCET anal-
ysis results to guide optimizations (see Section 3). We tackled this problem by developing a novel
representation called control-flow relation graphs (CFRGs)[6], which provide an accurate model of
the control-flow relation between machine code and the compiler’s intermediate representation. By
modeling the combined control-flow representations as an integer linear program, and applying a
variant of the well-known Fourier-Motzkin elimination algorithm [12], it is possible to automatically
transform any linear flow constraint from one representation to the other, in a sound and precise
way. As a consequence, we are able to reuse the results from LLVM’s Scalar Evolution analysis, a
symbolic value analysis already used for optimizations on the bitcode level, for WCET analysis (see
Section 2.2).

In order to facilitate the integration of CFRGs in LLVM, we developed a construction algorithm
that builds control-flow relation graphs from partial block mappings, and modified LLVM to ensure
these mappings stay valid during backend transformations. The necessary modifications are minimal,
as we reuse LLVM’s existing and largely platform-independent mechanisms to keep track of block
relations. The evaluation of this technique for the Patmos processor revealed that it facilitates the
precise transformation of flow information.

In the following, we provide an overview of CFRGs and relevant algorithms, and illustrate the tech-
nique by means of an example. Furthermore, we present evaluation results obtained using the current
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versions of the compiler and WCET analysis tool. For further details on algorithms, formal defini-
tions and proofs, see [6].

2.1.1 Control-Flow Relation Graphs

A CFRG Ĝ is a data structure that represents regular path relations between two CFGs Ga and Gb.
Similar to the way a CFG models a set of execution paths, CFRGs model a set of execution path
pairs.

The set of nodes of a CFRG V̂ is partitioned into three different kind of nodes. Progress nodes (V̂p)
ensure that progress in one representation is matched by progress in the other one, and are labelled
with a pair of basic blocks from Ga and Gb. The progress nodes ŝ, t̂ ∈ V̂p are the unique entry and
exit nodes without predecessors and successors, respectively, and correspond to the respective entries
and exits of Ga and Gb. In addition to progress nodes, a CFRG comprises source nodes V̂a and target
nodes V̂b, that correspond to the execution of one basic block in either representation. Source nodes
are labeled with one block from Ga, target nodes with one block form Gb. Edges in the CFRG are
either source edges Êa ⊆ (V̂p∪V̂a)×(V̂p∪V̂a), or target edges Êb ⊆ (V̂p∪V̂b)×(V̂p∪V̂b). Edges from
Êa and Êb correspond to a change of control in the functions modeled by Ga and Gb, respectively.

The intuitive idea of the CFRG representation is the following: assume πa and πb are two related
paths. Then the respective first nodes ua and ub and last nodes va and vb of πa and πb should be related
as well, and correspond to progress nodes û (labeled with (ua, ub)) and v̂ (labeled with (va, vb)). In
case there is no (modeled) relation between subpaths of πa and πb, there will be a path of Êa-edges
corresponding to πa, and a path of Êb-edges corresponding to πb, such that no interior node of π̂a
and π̂b is a progress node. Conversely, if there are prefixes of πa and πb that are related, then there
will be some progress node ŵ, labeled with the last nodes of the related prefixes. Now the same
considerations apply recursively to the related prefixes (from û to ŵ), and the related suffixes (from
ŵ to v̂) of πa and πb. Formally, this intuition is made precise by means of regular path relations [6];
in this report, we restrict ourselves to an illustrative example, presented next.

Example 1. Figure 1 shows two different CFGs and the CFRG for a function that counts the number
of digits and whitespace in a string. For simplicity, the semantics of each block’s instructions is
illustrated using a C-like pseudo language. Figure 1a shows the CFG of the function at the IR
level. Figure 1b represents the same program after a few typical backend transformations have been
performed: (1) due to layout optimizations, a new basic block is introduced at the entry of the function
(2) the switch instruction is replaced by two conditional branches; as a consequence, one outgoing
edge of the switch block corresponds to two paths in the transformed program (3) the branch to the
basic block digit is eliminated using a predicated instruction (if-conversion) (4) the tail of the loop
body is duplicated.

Figure 1c visualizes the control-flow relation graph for this example. There are eight progress nodes,
each labeled with a pair of CFG nodes, four source nodes and two target nodes. One relation
modeled by this graph is the one between the IR-level path

πa = body→ case1→ latch→ head

and the two machine-code paths

π1
b = _body→ _case1→ _head π2

b = _body→ _body2→ _case1→ _head

Page 4 Version 1.0
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Indeed, inspecting the respective CFGs, we see that every time the sequence πa is executed at the
IR-level, either π1

b or π2
b is executed on the machine-code level.
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s

head :
v1 = * s t r
c1 = v1 == 0
goto ( c1 ? body : end )

body :
sw i t ch ( v1 ) {

case ’ ’ : goto c a s e 1
case ’ \ t ’ : goto c a s e 1
d e f a u l t : goto c a s e 2 }

c a s e 1 :
ws++
goto l a t c h

c a s e 2 :
v2 = v1−’ 0 ’
c2 = v2 < 10
goto ( c2 ? d i g i t : l a t c h )

d i g i t :
d i g i t s ++
goto l a t c h

l a t c h :
s t r ++
goto head

end :
re turn

t

(a) IR-level CFG

s’

_ e n t r y :
jmp _head

_ ca se 1 :
s t r ++
ws++

_head :
v1 = * s t r
c1 = v1 != 0
[ c1 ] jmp _body

_end :
re turn

_body :
c3 = v1 == ’ ’
[ c3 ] jmp _ ca se 1

_body2 :
c4 = v1 == ’ \ t ’
[ c4 ] jmp _ ca se 1

_ ca s e 2 :
v2 = v1−’ 0 ’
c2 = v2 < 10
[ c2 ] d i g i t s ++
s t r ++
v1 = * s t r
c1 = v1 !=0
[ c1 ] jmp _body

_end2 :
re turnt’

(b) Machine-code–level CFG

ŝ entry

head + _head) body + _body

latch

case1 + _case1

_body2

case2 + _case2

digit latch

head

end + _end end + _end2t̂

(c) Control-Flow Relation Graph

Figure 1: Illustration of two different CFGs and the CFRG of a function counting digits and white
spaces in a string. In the machine-code representation, dashed edges are fall-through transitions;
predicates guarding the execution of an instruction are written in square brackets. In the CFRG,
progress nodes are drawn with solid, source nodes with dashed and target nodes with dotted shapes.
Dashed lines correspond to source edges, dotted lines to target edges; we draw solid lines if there is
both a source and target edge.
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2.1.2 Flow Fact Transformation

The CFRG representation allows to transform control-flow related information from one representa-
tion to the other. In particular, we have implemented a technique to transform flow facts from the IR
level to machine code in a sound way (see Section 2.2).

The transformation of flow facts proceeds as follows. First, we build integer linear programs that
model the control-flow in the IR representation, and in the machine code representation, respectively.
In these models, which are build using the IPET technique [11], variables correspond to the execution
frequency of control-flow edges. Next, we derive equations from the control-flow relation graph
which relate variables from both representations. These equations relate edges in the CFRG with
edges in one of the CFGs, assert that flow is preserved for CFRG edges, and express the fact that
flow through progress nodes is the same in both representations.

The integer linear program obtained this way contains edges from both CFGs, as well as CFRG
edges. In order to derive flow facts on the machine-code level, we add the IR-level flow constraints
to the model, and then eliminate all CFRG edges and edges from the IR-level CFG using our im-
plementation of the Fourier-Motzkin elimination algorithm. An edge e is eliminated as follows: if
e appears in an equation e = T , replace all occurrences of e by T . Otherwise, partition the set of
constraints where e appears into a set of lower bounds CL of the form TL ≤ e and a set of upper
bounds CU of the form e ≤ TU . Then add the constraints TL ≤ TU for all TL, TU ∈ CL × CU , and
remove the original constraints and variable e from the problem. In order to improve the efficiency of
this procedure, we eliminate all edges at once, and use a heuristic to guide the selection of variables
to be eliminated next.

2.1.3 Construction Algorithm and LLVM Integration

The effort to keep a CFRG-based relation model up-to-date in the backend might be challenging
even for compilers engineered with CFRG support in mind, and even more so for existing industrial-
quality compiler frameworks such as LLVM. Therefore, we developed an algorithm that allows to
build CFRGs from partial block mappings, which need considerably less effort to be integrated into
a compiler backend. This is in particular true for LLVM, as we could reuse and adapt existing
infrastructure for maintaining basic block relations, and then apply the construction algorithm.

From the perspective of the CFRG construction algorithm, the compiler needs to provide a partial
mapping from basic blocks (both at the bitcode and machine code level) to events. This mapping
needs to satisfy the property: assuming that every basic block emits the event it is associated with (if
any), and the function is executed in both representations with equivalent input, the same sequence of
events is emitted in both program representations. Given that the event mapping provided by LLVM
is correct, the construction algorithm is guaranteed to provide a correct CFRG.

In our implementation, the set of events is a subset of IR-level basic blocks. In the compiler, we
maintain a partial mapping B from machine basic blocks to IR-level basic blocks. If a bitcode basic
block Ba is in the range of B, it is associated with the event e(Ba); otherwise, no event is assigned
to Ba. For machine-code basic blocks, if Bb is in the domain of B, it is associated with the event
e(B(Bb)); otherwise no event is assigned toBb. Thus every machine-code block that is in the domain
of B is associated with the same event as the corresponding bitcode-level block.
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Minor modifications to ensure that the block mapping B matches the requirements of the CFRG
construction algorithm were necessary as well. Most notably, the update of B during the tail merging
optimization had to be modified. This optimization pass introduces a new machine basic block which
corresponds to suffixes (tails) of two different blocks before the optimization. As B associates a
machine basic block with at most one bitcode basic block, B has to be undefined for these newly
introduced blocks.

In our toolchain, CFRGs are integrated as follows. At the end of the code-generation phase we export
both the IR-level CFGs and the machine-code level CFGs, as well as the CFRGs obtained using
the construction algorithm using the PML format. The platin tool subsequently uses CFRGs to
transform flow information to be used during WCET analysis; the LLVM compiler relies on relation
graphs to interpret analysis information for optimizations.

2.1.4 Evaluation

The goal of the evaluation presented here was to assess whether CFRGs provide precise control-flow
relations, and to obtain insights on the size of CFRGs and the number of constraints generated by our
flow-fact transformation technique.

The baseline for the evaluation is the WCET bound calculated using a set of predetermined flow facts
at the machine code level. This bound is compared with the WCET analysis result obtained using
our flow-fact transformation technique and flow facts on the bitcode level. In order to ensure a fair
comparison, we did not generate bitcode-level flow facts with a different tool, but transformed the
original set of flow facts to bitcode (roundtrip).

We attempted to use a wide variety of flow facts in the evaluation, that should reference all basic
blocks (and not just loop headers, for example). An effective way to obtain such flow facts for
evaluation purposes is to use flow-fact generation from execution traces, a feature that has been
implemented in the platin tool. Note that for deterministic benchmarks, there is exactly one
feasible execution path, and thus the flow facts extracted from machine-code traces are indeed precise
characterizations of the benchmark run.

The evaluation proceeds as follows: First, each benchmark is compiled using the Patmos port of
LLVM, resulting in the binary and the PML file, that includes the CFRGs for all functions. We use
the default optimization level (-O2), which enables the optimizations tail duplication, branch folding,
tail merging and if-conversion; all of them modify the structure of the CFG. Besides optimizations,
differences in the structure of the CFGs stem from the fact that some bitcode instructions require the
compiler to introduce additional basic blocks. A notable example is the switch-statement, which is
lowered in different ways, depending on the number of cases as well as the range and the density of
the case label values.

The WCET calculation itself is carried out twice for each binary, once with the set of flow facts
obtained from the trace analysis, and second with the set of transformed flow facts. As the evaluation
deals with WCET calculation, not low-level timing analysis, we settled for a simple configuration
that assumes fast, local memories. Different low-level timing models would only change the cost
model that is used for both WCET estimates.
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Table 1: Evaluation of CFRGs

Benchmark |Va| |Vb| |u(Vb)| |V̂ | Tb
T̂−Tb
Tb

Mälardalen WCET benchmarks
adpcm 37 35 11.43% 49 2699576 0.00%

bsort100 11 13 15.38% 15 126353 0.00%
cnt 34 5 20.00% 36 3359 0.00%

compress 50 50 16.00% 65 5345 0.00%
cover 16 19 0.00% 20 1122 0.00%
crc 7 9 22.22% 11 14364 0.00%
edn 34 37 13.51% 42 93077 0.00%

expint 11 9 0.00% 14 92189 0.00%
fdct 4 5 20.00% 6 2206 0.00%
fft1 172 176 14.77% 229 62806 0.34%

jfdctint 5 7 28.57% 8 4064 0.00%
lcdnum 21 22 0.00% 23 201 0.00%

lms 358 338 13.31% 479 6931095 0.16%
ludcmp 189 197 13.71% 240 66195 0.05%
matmult 13 15 13.33% 16 162065 0.00%
minmax 11 7 0.00% 13 93 0.00%
minver 191 193 14.51% 249 12110 0.35%
ndes 45 26 7.69% 49 43744 0.00%
ns 11 12 8.33% 13 8130 0.00%

nsichneu 753 501 0.00% 754 7918 0.00%
qsort 54 46 13.04% 70 4097 2.27%
qurt 192 193 15.03% 256 31941 0.32%

select 56 48 16.67% 76 4840 1.74%
statemate 15 12 8.33% 17 197 0.00%

ud 105 114 12.28% 130 14500 0.14%
other ≤ 10 ≤ 10 0% ≤ 10 - 0.00%

PapaBench WCET benchmark (Tasks)
check_failsafe 120 124 12.10% 152 1477 0.00%

check_mega128_values 122 124 11.29% 152 1480 0.00%
send_data_to_autopilot 108 107 12.15% 135 666 0.00%

servo_transmit 93 71 0.00% 98 504 0.00%
test_ppm 245 236 10.17% 308 4714 0.00%

altitude_control 89 78 10.26% 120 319 0.00%
climb_control 232 220 11.82% 301 1931 0.31%
link_fbw_send 6 3 0.00% 8 42 0.00%

navigation 633 500 15.40% 902 7967 0.62%
radio_control 285 252 11.11% 362 42 0.00%

receive_gps_data 374 357 12.04% 495 51 0.00%
reporting 108 89 3.37% 115 521 0.00%

stabilisation 201 187 12.83% 272 1289 0.70%

We investigated benchmarks from two suites popular in the WCET community; 33 benchmarks from
the MRTC benchmark set, and the real-time tasks from the PapaBench WCET benchmark 1. Table 1
summarizes the results of the evaluation. |Va| and |Vb| give the total number of basic blocks in
the bitcode and machine code CFGs, respectively. The column |u(Vb)| shows the percentage of
unmapped machine-code basic blocks, that is, the percentage of blocks not in the domain of B. |V̂ |

1All sources are available as part of our benchmark collecting at https://github.com/t-crest/
patmos-benchmarks
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corresponds to the total number of relation graph nodes. In the column labeled with Tb, the WCET
using the original set of machine-code flow facts is given. The column labeled (T̂ − Tb)/Tb shows
the increase of the calculated WCET bound when using transformed flow facts, relative to Tb.

The percentage of unmapped machine-code basic blocks, that is, those blocks not in the domain
of B, is an indicator for the (local) uncertainty in the initial control-flow mapping provided by the
compiler. Although in theory the size of a CFRG need not be linear in the number of basic blocks, in
the evaluation it turned out to be at most twice as large.

Analysis tools that operate on the bitcode level are portable and operate on a program model that
provides more information than a binary file. As our CFRG model relies on control-flow abstrac-
tions only, the transformation of IR-level flow facts to machine code potentially looses information
needed to calculate a precise WCET bound. In our evaluation, however, we found that in all of the
benchmarks investigated, there is no substantial loss of precision due to the transformation process.

2.2 Symbolic Flow Fact Integration

Optimising compilers provide transformation passes that require some form of program analysis prior
to the actual transformation. Although information from such analyses would be valuable also for
timing analysis, it is usually discarded after the transformation pass requiring it. This section provides
one example to demonstrate the benefits of the availability of information from the compiler for the
WCET analysis phase.

Recent research efforts have focused in exploiting the properties of a type-enriched SSA representa-
tion, like the bitcode IR of LLVM, to generalise and improve compiler analyses and transformations
that were formerly tied to a source level representation [9]. The benefits of such analyses on this
high-level intermediate representation are evident: They are independent of both source language
and target platform. In addition, the usage of symbolic names and values provides a high degree of
accuracy, as opposed to the lower-level machine code owing to concrete register names and sub-word
operations.

In order to be WCET-analysable, maximum iteration counts for loops (loop bounds) must be known
statically for programs. Although the timing analysis tool aiT features a loop bound analysis, the
low-level nature of the machine code often prohibits computation of loop bounds solely with the
information available in the binary. As a consequence, the programmer is requested to provide bounds
manually – a task that is both tedious and error-prone.

However, often loop bound information is readily available in the compiler. The LLVM framework
features a loop induction variable analysis that computes the evolution of program values during loop
iterations, in order to reduce computation costs within the loop (loop strength reduction). This bitcode
analysis pass named Scalar Evolution computes closed-form expressions for maximum backedge-
taken counts of predictable loops, such that extraction of loop bounds from the intermediate program
representation becomes possible.

Loop iteration counts often depend on the program state or the execution context. In the following,
we will distinguish between two kinds of loop bounds:

Constant loop bounds.
They are valid in all execution contexts of the corresponding loop.
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Symbolic loop bounds.
They are parametrized over program or register values at a specific program point.

The goal of the symbolic flow fact integration is to provide as much loop bound information as
available automatically to the analysis tool. This way, the burden on the programmer to provide
loop bounds manually should be reduced. Furthermore, the quality of the bounds should be high to
achieve a precise analysis result. To this end, we support symbolic loop bounds that are parametrised
over formal function arguments.

Example 2 (Running example). Consider the example in Figure 2. The C source code fragment
describes a function containing a nested loop. The iteration count of the outer loop depends on
function parameter ub. Furthermore, the iteration count of the inner loop depends on the value of i,
the induction variable of the outer loop, a property defining a so-called triangle loop.

void f(int ub) {
int i,j;
for(i = 0; i < ub+1; i++) {

for(j = 1; j < i; j++) {
work(i,j);

}
}

}

Figure 2: A triangle loop for which the loop iteration count of the outer loop depends on the function
parameter ub.

The Scalar Evolution analysis provided by the compiler is centered around the concept of chains of
recurrences [14]. The idea is to represent loop-variant values as recurrences on the trip count of loops.
Recurrences supported by LLVM and thus by our analysis take the form s+ci, where i is the iteration
counter of a loop (counting from 0 up with increment 1), s is the (loop-invariant) start value and c
is the loop-invariant stride. LLVM’s Scalar Evolution analysis computes loop bounds by inspecting
exit conditions, and analyzing comparisons between the chain-of-recurrences representation of the
loop induction variable and loop invariant variables. The loop bound expressions computed reference
bitcode variables and, by means of chains of recurrences, the iteration counter of outer loops.

Figure 3 illustrates the loop bound expressions computed by Scalar Evolution for the example in
Figure 2. The outer loop’s body is executed ub+1 times every time the outer loop is entered, or not
at all if ub is less than one. The bound for the inner loop depends on the iteration count of the outer
loop. In the first two iterations of the outer loop, the inner loop’s body is not executed at all, in the
ith iteration of the outer loop, it is executed i− 1 times.

Backedge count inner loop: max(0,{-1 + i}<outerloop>)
Backedge count outer loop: max(%ub + 1, 0)

Figure 3: Scalar evolution expressions for the backedge counts of the triangle loop
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Formula A Condition

(L′ − A)s+ L′(L′−1)−A(A−1)
2

c max(0, b−s
c
c) c ≥ 0 ∧ A < L′

0 max(0, b−s
c
c) c ≥ 0 ∧ A ≥ L′

As+ A(A−1)
2

c max(0,min(b s
−cc, L′ − 1) c < 0

Table 2: Total trip counts of triangle loops from Scalar Evolution

Loop bounds that depend on the iteration counter of the outer loop need to be resolved to obtain
flow facts that can be interpreted by the WCET analysis tool. A loop bound expression L(i) =
max(0, s + ci), where c is a integer constant and i is the iteration counter of an ancestor loop, either
increases or decreases in a monotone way, depending on whether c is positive or negative. The
expression L(i) thus takes it maximum at max(0, s) if c is negative. If c is positive, and L′ denotes
the (possibly symbolic) loop bound of the outer loop, the inner loop’s bound is max(0, s+c(L′−1)).

These loop bounds are not always sufficient for precise WCET estimates, however, as the maximum
loop bound depends on the trip count of the ancestor loop. Therefore, we also extract bounds for the
frequency of the loop header relative to the entry of the outer loop.

The bound on the number of times the inner loop’s header is executed relative to the ancestor’s loop
entry is

B =
L′−1∑
i=0

max(0, s+ ci)

The only complication in this formula is the maximum inside the sum, and the fact that L′ need not
be positive. As noted in [5], this is the reason why simply taking the well-known closed form for
the arithmetic series is not correct in the general case. Fortunately, the maximum be eliminated by
splitting the sum in two parts (this in turn is possible as s+ ci is monotone). Table 2 summarizes the
formulas for the total trip count of triangle loops. The second and first column show a helper variable
(A) and the formula, which is applicable if the condition in the third column holds.

This kind of loop analysis technique has been applied in the context of timing analysis before [5].
The most compelling advantage of our tightly-integrated solution is that we first extract symbolic
loop bounds that are later on instantiated (in the aiT tool) using values obtained by context-sensitive
abstract interpretation. Moreover, our integration strategy enjoys long-term benefits from direct com-
piler integration; any improvements in the compiler, or the integration of other bitcode analysis tools,
will also improve the analysis.

Example 3. In the example program from Figure 2, the outer loop bound is max(0,ub + 1), and
the inner loop bound −1 + i. Therefore, the closed form for the inner loop bound is max(0,−1 +
(max(0,ub + 1)) − 1), which simplifies to max(0,ub − 1). Indeed, as i is at most ub (in the last
iteration), the inner loop is executed at most ub − 1 times, or not at all if ub ≤ 1. The bound for
executions of the inner loop’s body relative to the function entry is obtained using the formula for
c ≥ 0. In this case, we have c = 1 and s = −1, and so A = 1. The formula then simplifies to
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ub(ub-1)
2

. Also considering the case when ub ≤ 1, the inner loop’s body is thus executed at most
B = max(0, ub(ub-1)

2
) times for every execution of the function.

In the information export phase, implemented in LLVM, support for symbolic flow facts consists of
two parts. First,the scalar evolution pass is queried. If a scalar evolution expression describing the
backedge count of a loop is either constant or parametrised over formal function arguments only,
the expression is exported as flow fact refering to the bitcode representation to the PML database.
Second, a mapping of the symbolic names of function arguments to machine registers, which will
eventually hold the respective values, is exported for machine functions if the argument is an inte-
ger type and contained in machine registers. This information is target dependent and attached to
functions of the machine code level representation.

Symbolic loop bounds are communicated to the WCET analysis tools by transforming them from the
bitcode to the machine code level, and subsequently generating appropriate annotations for aiT. In
platin, we parse the symbolic bounds and resolve affine chains of recurrences as discussed above.
Next, we use the control-flow relation graph as well as the argument register mapping to transform
the loop bound from bitcode to the machine code level. Figure 4 shows the resulting flow constraints
for the running example.

Backedge count outer loop (MC): max(r3 + 1, 0)
Backedge count inner loop (MC): max(0, max(r3+1,0)-2)
Total Backedge count inner (MC): max(r3+1,0)*(max(r3+1,0)-1)/2

Figure 4: Before export to aiT, we resolve chains-of-recurrences and transforms symbolic flow facts
from bitcode to machine code.

The aiT tool allows to specify loop bounds that depend on so called user variables. These variables
exist at the analysis level only, and may be assigned to expressions involving registers, at any in-
struction in the program. We exploit this mechanism by assigning the value of argument registers to
user variables at function entries, and then reference these user registers in the symbolic expression
specifying the loop bound (see Figure 5).

instruction "f" is entered with @arg_r3 = trace(reg r3);
# extracted argument for symbolic loop bound

loop ".LBB2_2" max (@arg_r3 + 1, 0) end;
# global loop header bound (source: llvm)

Figure 5: AIS annotations for the timing analysis tool, describing the parametric loop bound of the
inner loop.

2.3 Providing Information on Memory Addresses

To aid the timing analysis tool in the loop and value analysis phase, we have extended the com-
pilation tool chain to provide information about targets of memory accesses (cf. Deliverable D6.1,
Section 3.2). By providing this additional information, we expected an improvement in the quality of
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the timing analysis result. The auxiliary information can be used to improve the precision of the data
cache analysis. Furthermore, it is the basis for an optimisation that exploits the memory organisation
of Patmos and leads to tighter WCET bounds (see Section 3.2).

The timing analysis tool accepts memory access targets by means of AIS annotations of the form

instruction address accesses: expression ;

where expression provides the target of the memory access by means of the accessed symbol and an
optional offset.

2.3.1 LLVM Implementation

We remind the reader that the the LLVM intermediate language (bitcode) is in Single Static Assign-
ment (SSA) form, i.e., a variable is assigned exactly once. To facilitate assignments of variables from
different sources of input resulting from control flow, SSA features the φ function, which “chooses”
the right definition from its operands [3]. Futhermore bitcode features load and store instructions
that have a pointer operand specifying the address of the memory access. In the LLVM backend
framework, memory accessing machine instructions can be equipped with a memory operand, which
references the pointer operand of the bitcode representation.

During the information export phase, whenever a memory-accessing machine instruction is encoun-
tered, the value of the memory operand is read. Then we employ an algorithm operating on the
bitcode representation starting from the pointer value as described below. If the algorithm is able to
narrow down the memory accesses to static data to one or more symbols, this information is exported
as a value fact refering to the respective machine instruction to the PML database, processed by platin
and eventually translated to a AIS annotation for the timing analysis tool.

In our implementation, we try to expose memory accesses to global symbols that refer to com-
pound data objects (arrays, records). Elements of these data objects are addressed by the LLVM
getelementptr instruction (GEP), that has a base address (with type) as first operand and a list
of indices that specify the exact location of the item within the compound structure.

In the simplest case, the base address is a global symbol. But it could also be a computed value,
e.g., by another GEP instruction. Or it could result from a φ operator, the merge-operator of the
SSA-form. The algorithm we use to obtain possible memory targets is described in Algorithm 1. It
collects symbols which are possibly accessed in a set symbols. The value the memory operand of the
machine instruction is refering to is inspected. If it is an access to a global symbol (by GEP), the
symbol is added to symbols and the algorithm terminates. Otherwise, if the base address is computed,
the computed value is inspected. If the value is a φ operator, all its operand values are inspected. A
value is visited at most once: each time a value is inspected, it is added to a set of already visited
values, to ensure termination in case of circular definitions, as it is common for values defined in
loops. In all other cases, i.e., the value is neither a GEP nor a φ operator, a > is added to symbols.
After the algorithm has terminated, if the set of possibly accessed symbols contains >, no precise
information about accessed memory has been obtained. Otherwise, the memory areas referenced by
symbols are exported as possible memory access targets.
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Algorithm 1 Collecting possibly accessed global symbols.

1 global visited = ∅, symbols = ∅

2 procedure EXPLORE(v):
3 visited = visited ∪ {v}
4 case v.kind of
5 GEP:
6 if indexesGV(v)

// Base case
7 symbols = symbols ∪ {v}
8 elseif v.baseptr 6∈ visited
9 EXPLORE(v.baseptr)

10 return
11 PHI:
12 foreach w ∈ v.operands do
13 if w 6∈ visited
14 EXPLORE(w)
15 return
16 default:
17 symbols = symbols ∪ {>}
18 return

2.3.2 Evaluation

We compared the quality of the timing analysis results obtained with no address information to the re-
sults with address information available. The benchmarks consisted of the Mälaradalen benchmarks,
tasks from PapaBench and three synthetic benchmarks.

As for the data cache configuration, we assumed a 4-way set-associative data cache with 2KB size
and a cache line size of 32 Bytes. The transfer time consists of a constant request time and the
transfer time for each successive double-word. The request time was assumed as 10 cycles, and 4
cycles for each successively transferred double-word. Loading one double-word from main memory
thus takes 14 cycles, a cache line of four double-words takes 26 cycles. See [7] for a rationale for
these numbers.

The number of exported value facts for memory addresses, which corresponds to the number of
instructions for which address information was available, is given in Table 3. Benchmarks, for which
no information was exported at all, are not listed in the table.

While the information had a very little effect on the computed worst-case execution time bound, we
could observe changes in the aiT classification of memory accesses. The tool puts each access into
one of four categories: exact, nearly precise, imprecise, and unknown. An access is exact if the
address of the memory access is known. An access is imprecise if the access is known to be in a
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benchmark -O0 -O1 -O2
mrtc_adpcm 1 24 1
mrtc_bs 3 0 0
mrtc_bsort100 0 1 1
mrtc_cnt 0 0 2
mrtc_compress 1 6 6
mrtc_crc 15 2 1
mrtc_fdct 0 2 2
mrtc_insertsort 6 0 0
mrtc_jfdctint 1 3 3
mrtc_matmult 0 7 7
mrtc_ndes 18 12 9
mrtc_ns 3 0 0
mrtc_nsichneu 378 1 1
mrtc_qsort 43 15 15
mrtc_select 39 17 16
mrtc_ud 1 0 0
papa_fbw 12 17 2

Table 3: Number of exported value facts for memory accesses, for the benchmarks with different
optimisation levels.

.

given range, if the range is below a certain threshold (1024 Bytes), the access is classified as nearly
precise.

Figure 6 depicts the impact of the address export on the memory access classification by aiT, on
memory reads with the benchmarks compiled with basic optimisations enabled (-O1). We observe
that with our export strategy the number of precise accesses remains unchanged. For benchmarks
where address information could be obtained and exported from the compiler (e.g., adpcm, ndes,
qsort, select), accesses could be classified more precisely, i.e., accesses that were classified as un-
known before, are classified as imprecise or nearly precise. Also, the range of imprecise accesses
could be narrowed such that the accesses became nearly precise.
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(a) Memory access classification without address-export
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(b) Memory access classification with address-export

Figure 6: Impact of the address export on the memory access classification by aiT.
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2.4 Stack Cache Related Information

In Deliverable D5.3 we described the compiler support for the stack cache that is employed in Patmos.
The stack cache allows the program to store fixed size stack frames locally at the processor node. The
Patmos ISA provides special instructions, which are used to reserve and to free space in the stack
cache, as well as to load stack frames back from memory after possible eviction by callees. Costly
memory transfers to global memory are limited to those special instructions.

In order to reduce the number of generated stack cache control instructions as well as the amount of
memory filled and spilled by the stack cache, the compiler performs a stack cache optimisation using
a stack cache occupancy analysis. For a description of the analysis and the optimisation, we refer to
Section 4.2.

The results of the occupancy analysis are not only used to perform the stack cache optimisation, but
also to aid the WCET analysis tool with the static analysis of the stack cache related spill and fill
costs. Based on the maximum cache displacement found by the stack cache occupancy analysis, the
compiler derives worst case values for the maximal number of blocks spilled or loaded from main
memory at stack control instructions sens and sres.

We use the PML export framework to emit those numbers for all stack control instructions in the
application code. They are then exported to aiS annotations by the platin tool.
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3 Feedback-directed WCET Optimisations

In the previous section, we focussed on the flow of information from the compiler to the WCET
analysis, which is used to improve the precision of the WCET bound. In this section we present
optimisations that use information from the WCET analysis inside the compiler, thus closing the
loop of the compiler and WCET analysis integration. We will first discuss the challenges in back-
annotating WCET analysis results to compiler passes and present our approach to back-annotation
and feedback-driven optimisation, and then present optimisations that make use of the information
from the WCET analysis in order to reduce the WCET of the application tasks.

3.1 Introduction

WCET-guided optimisations attempt to use information provided by WCET analysis tools, such as
aiT, to guide the optimisation process. In general, optimisation passes operate on a program repre-
sentation different from the one that is reflected in the final executable, due to the effect of subsequent
optimisations. This in turn complicates the flow of information from the analysis tool to the optimi-
sation pass, and requires to interpret the analysis information in the context of the optimisation’s
input.

In order to avoid this problem, it seems tempting to analyze the WCET of the code that it is fed into
the feedback-directed optimisation pass, instead of the final executable. However, WCET analysis
tools need to operate on linked binaries, as timing is only defined if all machine code with address
information is available.

Instead of analysing the input to the optimisation pass directly, one might disable subsequent opti-
misations, generate a linked executable, analyse it and use the results to guide the optimisation. This
simplifies the processing of the analysis information, as the analysed program is closer to the one
subject to optimisation. The downside of this approach is, however, that disabling all subsequent
optimisations might lead to quite different analysis results, which in turn misleads the optimisation
pass.

For example, consider the if-conversion optimisation, that is scheduled as one of the last optimisa-
tions in the Patmos backend. If it is disabled, it is indeed much easier to relate the final executable
with the input to earlier optimisation passes. However, if-conversion also has a significant effect on
the VLIW scheduler (as it results in larger basic blocks) and on the WCET analysis (e.g., instruction
cache analysis is more precise for large basic blocks).

The approach we took within our framework actively deals with the problem of relating program
information. We use the analysis results obtained for the fully-optimised program, and in turn accept
the imprecision that stems from not being able to relate program representations precisely. This is
similar to the way profile-guided optimisations are performed, although we also have to deal with
more fine-grained analysis results, such as the address ranges determined for memory accesses.

The key ingredient of our solution is to keep a relation between the program before optimisations
are run, the analysed program representation, and the program representation subject to optimisation
(see Section 2.1). To this end, we implemented a generic framework for back-annotation in both
platin and LLVM. Before every optimisation pass that uses information from WCET analysis, the
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Figure 7: Strategy for WCET-guided optimisation

information is translated to program representation subject to optimisation (see Figure 7).We do not,
however, rerun the WCET analysis tool before every optimisation step, reducing the number of costly
analysis iterations. Another advantage of our approach is that analysis results from different sources
can be processed; it is also possible to use information obtained from analyzing execution traces, for
example.

In general, information from the WCET analysis tool is processed as follows. First, we interpret
the information from the WCET analysis tool with respect to the program model used in platin
(which in turns corresponds to LLVM’s program model, extended with context sensitivity). The
WCET analysis tool aiT treats loops as functions, and thus loop entry and exit edges are modeled
by function calls and returns. This is a challenge when interpreting the analysis results, as call
contexts are potentially merged when entering a loop. Next, the analysis results are written to the
PML database. In order to perform WCET-guided optimisations, this PML file has to be provided
to LLVM. Optimisation passes that need WCET analysis results use a generic query interface, that
provides the desired results in the context of the optimisation passes’ input.

In order to simplify the use of feedback-driven optimisations, we also provide a drop-in replacement
for the C compiler (patmos-clang-wcet). The user needs to pass a configuration to this tool,
that provides sufficient information to configure both compiler and WCET analysis, depending on the
hardware configuration. Using this information, the WCET analysis tool is run automatically after
compilation, and the results are fed back into the compiler in the subsequent iteration.
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3.2 Value Analysis Feedback: Bypass Optimization

It is not always possible to determine the exact address or address range of a memory access during
value analysis. This is troublesome, as an access where the address is not known invalidates large
parts of the knowledge accumulated about cache contents. For a direct mapped cache, all information
about the cache content is lost after after a load from a single unknown address; for N -way set-
associative caches, the known maximum age of all tags increases by one.

This observation leads to a promising strategy to improve the WCET performance for data caches:
simply bypass the cache for accesses where the address is unknown [8]. This will never increase
the WCET, as the analysis is lacking the knowledge to classify these accesses as cache hits anyway.
Because the knowledge gained about the cache state is not destroyed if the access is bypassed, the
precision of the analysis potentially increases.

Where as this WCET-guided optimisation is straightforward from a theoretical point of view, its
implementation in a realistic setting (i.e., using an industrial WCET tool and an optimising compiler)
has several demanding infrastructural requirements: (1) it requires an instruction set that allows to
selectively bypass the cache when accessing the memory (2) compiler support for generating different
type of memory access instructions is necessary (3) it is desirable to have value analysis results from
the binary-level WCET analysis tool available in the compiler. Fortunately, these requirements are
met within the context of the T-CREST project.

A peculiarity of the Patmos ISA are the typed memory instructions. The type can be one of following:
cache, local, stack, or bypass. Loads typed as cache do access and update the data cache, fetching
the contents from main memory as necessary. In contrast, loads typed as bypass skip the cache
interaction and load the data from main memory, regardless of its availability in the data cache. Load
instructions with cache type are potential candidates for the bypass optimisation; the compiler can
emit loads of bypass type instead.

The set of memory accesses that should by forced to bypass the cache depends on the capabilities
of the static analysis. Although it might be plausible to guess a priori which accesses will be unpre-
dictable, it is preferable to obtain this information from the analysis itself.

In our toolchain, we read the analysis results from the XML result files produced by aiT and in-
terpret the results of the value analysis in the context of LLVM’s program model. The analysis tool
distinguishes different contexts (e.g., call sites or loop iterations) for the address of an access (this is
necessary to achieve good precision). The information for all contexts is collected separately in the
PML database, in the same format that is used to transfer information about memory accesses from
the compiler to the WCET analysis tool (see Section 2.3). As the compiler generates one block of
code that is used for all contexts, eventually the results from different contexts are merged to decide
whether a bypass instruction should be emitted.2

2 The compiler might use procedure cloning to create multiple copies of a function for selected execution contexts.
However, this optimisation might have high costs due to the increased instruction cache pressure if multiple copies of a
functions are resident in the cache.
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3.2.1 Implementation of Early and Late Bypass

Given the merged value range information for memory access addresses in the PML database, a
memory access is classified as unpredictable if the size of the range is above a specified threshold.
The corresponding memory instruction should be typed as bypass instead of cache.

We developed a compiler pass scheduled as one of the latest passes, which rewrites memory instruc-
tions to bypass the data cache, based on the memory address range information contained in a PML
database. The range information is contained as value facts that correspond to a program point in a
certain execution context. Regarding the mapping, a 1:1 mapping of basic blocks is required, i.e.,
only basic blocks that are progress nodes in the relation-graph model (cf. Section 2.1) between the
bitcode and the machine-code representation are considered.

For each mapped basic block, a list of corresponding value facts that refer to address range informa-
tion is obtained from the PML import pass. The range information is merged such that if the range
exceeds a threshold (e.g., 224 bytes) in any context, the instruction is to be rewritten. To this end, the
corresponding program points are stored in a set. Once all program points for a basic block that need
to be rewritten are collected, a reference to each of the program points is obtained by means of the
ordinal number of the memory access, from the program representation in the PML database. Under
the assumption that memory accesses are not reordered, this reference is robust even if prior optimi-
sation passes have inserted or moved machine instructions. Therefore, in a last step the instructions
of the machine basic block are traversed and load instructions are counted. Each i-th load instruction
is rewritten if i is contained in the set of references.

Obviously, this approach has the disadvantage that due to loss of information in the mapping between
the program representations potential candidates for bypassing the cache are missed. To overcome
this limitation, we developed a tool such that the optimisation step could be delayed after code gen-
eration and linking. This late-bypass tool (in contrast to the bypass transformation performed early
as part of the code generation) is integrated into the platin toolkit. Like the early bypass, the
late bypass merges range information and rewrites instructions for which the range is larger as the
threshold in any context of a program point. But, as the program representation subject to analysis
and the program representation subject to optimisation are equal in this case, all instructions that are
candidates for the bypass optimisation are captured.

3.2.2 Evaluation

Again, we considered the Mälardalen benchmarks and tasks from PapaBench for our evaluation. The
cache configuration was same as for the evaluation of the address export (cf. Section 2.3.2), i.e., 2KB,
line size 32 byte, 26 cycles transfer costs per cache line are assumed. The bypass optimisation was
performed by the late-bypass tool of platin. Table 4 and Figure 8 depict the obtained results.

With the bypass optimisation, the WCET bound could be reduced in 50% of the benchmarks, and
in 6/32 cases the WCET bound was below 90% of the original WCET bound. In three cases it even
dropped down to nearly 60-65%.
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benchmark unopt bypass %
mrtc.adpcm 3835077 3832651 99.94
mrtc.bs 230 230 100.00
mrtc.bsort100 1131376 1131376 100.00
mrtc.cnt 11467 9909 86.41
mrtc.compress 26436 24965 94.44
mrtc.cover 1343 1343 100.00
mrtc.crc 65422 65422 100.00
mrtc.edn 390595 245364 62.82
mrtc.expint 101919 101919 100.00
mrtc.fdct 8006 7890 98.55
mrtc.fibcall 286 286 100.00
mrtc.fir 20706 20706 100.00
mrtc.insertsort 5867 4772 81.34
mrtc.janne 1060 1060 100.00
mrtc.jfdctint 10658 10658 100.00
mrtc.lcdnum 1167 1167 100.00
mrtc.loop3 9 9 100.00
mrtc.matmult 688295 448295 65.13
mrtc.minmax 524 524 100.00
mrtc.ndes 290784 272362 93.66
mrtc.ns 26985 17610 65.26
mrtc.nsichneu 16772 16772 100.00
mrtc.qsort 76210 73851 96.90
mrtc.select 35332 34505 97.66
mrtc.sqrt 9 9 100.00
mrtc.statemate 2008 1993 99.25
mrtc.ud 66043 57233 86.66
papa.check-failsafe 4243 4243 100.00
papa.check-mega128-values 4291 4276 99.65
papa.send-data-to-autopilot 2475 2340 94.55
papa.servo-transmit 2708 2558 94.46
papa.test-ppm 8731 8731 100.00

Table 4: Results from the cache bypass optimisation. Columns refer to the WCET in cycles for the
program without address information, the program with address information and extended data cache
analysis, and the program with bypass optimisation performed, respectively. Last column expresses
the ratio WCETbypass

WCETno-addr
.

.
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3.3 Timing Analysis Feedback-driven Optimizations

Executing the aiT WCET analysis tool provides the WCET bound of the analysed task, the execution
frequencies of the basic blocks on the found worst-case execution path (WCEP), as well as the WCET
of all basic blocks of all analysed functions. Those results are made available to the LLVM passes
via the PML import framework.

3.3.1 Deriving Criticalities for Basic Blocks

In addition to the results provided by the WCET analysis itself, the platin analysis driver tool
calculates the criticality metric [2] for all basic blocks based on the results from aiT. The criticality
of a basic block is defined as the ratio of the length of longest path over that block and the global
WCET. A basic block has therefore a criticality of 1 if that block is on any worst-case path.

To derive the criticalities, we use a simplified version of the worklist algorithm for pruned criticality
computation that has been presented in [1]. The platin driver tool iteratively runs the aiT WCET
analysis while adding flow constraints that force the WCEP to cover at least one basic block that has
not yet been covered. For all basic blocks v on the WCEPi found in iteration i that have not been
a part of any WCEPj found in a previous iteration j < i, the length WCET(v) of the longest path
over v is equal to the WCET found by aiT in iteration i. The criticality of a block v can therefore be
calculated as WCET(v)/WCET.

This information is back-annotated to the code representation under optimisation using the generic
import framework described previously. However, in general not all basic blocks of the code under
optimisation have a direct mapping to analysed basic blocks. We can use a property of the criticality
metric to calculate an upper bound for unmapped blocks.

Let v be a basic block of the code under optimisation that has no direct mapping to the analysed code.
If a basic block w either dominates or post-dominates v, then the criticality crit(w) of w is an upper
bound for the criticality crit(v) of v [2]. We therefore search for the closest dominator u of v and the
closest post-dominator w of v, for which a mapping exist. The criticalities of u and w can be taken
directly from the WCET analysis results. Since for the criticality of v it holds

crit(v) ≤ min(crit(u), crit(w))

we use the minimum of the found criticalities as approximation for crit(v).

The WCET analysis might calculate multiple criticalities for the same basic block, as the same basic
block might be analysed in multiple execution contexts and for multiple analysis targets. The com-
piler on the other hand generates a single function for all contexts (see footnote 2 on page 21). To
derive a single criticality value for a basic block from all execution contexts, we take the maximum
of all criticalities found for that basic block.

To facilitate the implementation of criticality driven optimisations, we implemented an LLVM anal-
ysis pass that performs all the necessary steps to create a mapping of the current code representation
to the analysed code, to lookup criticalities using dominators and post-dominators and to merge all
results from different analysis contexts. It provides a single criticality value per basic block that can
be used to guide optimisations.
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3.3.2 Criticality-driven Code Optimisations

We modified the function splitter algorithm that has been presented in Deliverable D5.3 to use the
criticality metric.

The function splitter creates subfunctions by iteratively adding basic blocks or strongly connected
components (SCCs) to the active region until no additional basic block can be added. The original
algorithm selects basic blocks based on their ID in order to preserve the original order of the basic
blocks in the function where possible. The WCET-oriented function splitter instead grows regions
with basic blocks that have the highest criticality. This reduces the number of branches into new
subfunctions on the WCET paths, which are more expensive than branches within a subfunction.
In order to avoid introducing new branches, fallthrough targets are always given a higher priority
though.

Further optimisations which might profit from the criticality metric are basic block placement and
if-conversion. The LLVM block placement pass rearranges the order of basic blocks so that more
likely jump targets become the fallthrough target, thus eliminating the jump costs in the common
case. The optimisation pass can be guided using profiling information that is collected during sample
executions of the program under optimisations. We are currently extending the LLVM framework so
that criticalities can be used as a static replacement for the dynamically collected profiling informa-
tion. As a result, blocks with the highest criticalities will be the preferred fallthrough targets, thus
minimising the jump costs on the WCEP.

On Patmos, branches within subfunctions cost three cycles, where up to two cycles can be filled
with meaningful instructions. If-conversion, which eliminates branches by merging basic blocks and
predicating the instructions with the branch condition, is therefore only beneficial on its own for very
small basic blocks as the branch instruction is replaced by the predicated execution of both branches.

However, reducing the control flow results in larger scheduling regions and thus larger freedom for
the instruction scheduler. The scheduler might be able to hide the costs of the if-conversion com-
pletely by scheduling instructions in the second pipeline and might even find a better schedule for the
code surrounding the if-converted region. Due to hardware resource restrictions, this is not possible
in all cases though.

Since the criticality crit(v) of a basic block v is defined as the ratio of the longest path over v and the
WCET, we can retrieve the length of the longest path over that block as

WCET(v) = crit(v) ∗WCET

and thus the maximum amount of cycles that we may add at block v before the WCEP switches to
v as WCET −WCET(v). However, since v might be executed multiple times on the longest path
over v, we need to divide the result with the execution frequency f(v) of v found when calculating
WCET(v) to get the costs for a single execution of v. The maximum amount of cycles that can be
added to a single execution of v is therefore

∆c(v) = WCET · (1− crit(v))

f(v)

As a conservative heuristic, we might therefore allow if-conversion only when the code to be inserted
into a block v has less cycles than this threshold. This prevents the if-converter from increasing the
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WCET of a function while enabling better scheduling optimisation opportunities and a more stable
execution time due to reduced control flow for non-critical code. The impact of those heuristics on
real world applications remains to be evaluated though.
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4 Optimisations using Patmos-specific Hardware Features

In this section we present improvements to the existing Patmos specific code generation features of
the compiler that were presented in D5.3.

4.1 Instruction Scheduling for Dual-Issue Patmos

The initial support for dual-issue code generation for Patmos presented in Deliverable D5.3 consisted
of several separate passes. First, a pre-register-allocation (pre-RA) scheduling pass created an initial
order of the machine instructions that are generated during the code selection phase in the backend.
The generic LLVM post-RA scheduler reordered instructions to minimize latencies at loads but is
not able to handle bundled code. A separate packetizer pass created bundles of instructions for dual
issue using basic instruction scheduling techniques. Finally, a custom delay slot filler pass reordered
instructions at branches to fill branch delay slots, and inserted NOOP instructions where necessary.

The resulting quality of the generated code proved to be very low, and the individual passes were hard
to maintain and to adapt to changes in the instruction set. We therefore created a new, single post-
RA instruction scheduling pass, which unifies scheduling to prevent instruction hazards, creation of
bundles and delay slot filling. This pass is partly based on the new scheduling framework of the latest
LLVM release, which has been adopted to our needs.

The new instruction scheduler implements a bottom-up list-scheduling algorithm based on a schedul-
ing DAG created by the LLVM scheduling framework. In the scheduling DAG, the nodes correspond
to machine instructions, and edges between nodes model dependencies between instructions, such
as data dependencies like read-after-write register dependencies, but also other dependencies like
memory barriers or hardware resource hazards. The edges of the graph are labelled with the minimal
required latency between two instructions. The latencies are derived by LLVM from an instruction
itinerary table that captures the pipeline stages and the interactions between the stages of the Patmos
hardware. The scheduler can therefore be much more easily adapted to changes to the hardware by
simply updating the itinerary table.

Branch delay slots are modelled by artificial edges from control flow instruction to the next instruction
after the branch. The latency of such an edge is set to the delay slot size of the control flow instruction,
and the control flow instruction is given a high priority to ensure that it is scheduled directly before
the first delay slot instruction.

The scheduler maintains a ready list of instructions of which all hazards have been resolved by the
current partial schedule and thus can be scheduled at the beginning of the current schedule. If the
ready list is empty, the scheduler inserts NOOP instructions as required by the ISA to prevent hazards.
If multiple instructions are ready, the scheduler creates a bundle of two instructions, if possible.

If-converted code and single-path code can be scheduled efficiently by removing dependency edges
in the scheduling DAG between instructions that are known to have mutually exclusive predicates
and thus have no effect on each other.
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4.2 Stack Cache Optimisations

In the previous deliverable D5.3 we described how the compiler supports the Patmos stack cache by
moving stack objects of fixed size from the shadow stack in main memory to the specialised stack
cache and by emitting stack control instructions sres and sfree to reserve and free space in the stack
cache in the function prologue and epilogue, respectively.

In addition to that, the compiler must generate stack control instructions sens at call sites to ensure
that the active stack frame resides in the stack cache, as it might have been spilled by the callee.
We recall the definitions of stack occupancy and stack displacement as well as the example from
Deliverable D5.3.

Definition 1. We denote by stack cache occupancy (or short occupancy) the amount of space allo-
cated on the stack cache at the entry of a given function.

Definition 2. We denote by stack cache displacement (or short displacement) the amount of data
spilled from the stack cache during the execution of a call.

Example 4. Consider a stack cache size of 4 words and a simple program with three functions A, B,
and C as shown by Figure 9. The corresponding call graph, i.e., a graph representing the relation
between functions calling each other, is shown in Figure 9d. Function C is called from three different

contexts. The first context is A
(3)−→B

(3)−→C, i.e., function A calls B on line 3, which in turn calls C on

line 3. The second context is similar A
(3)−→B

(5)−→C and refers to call of B to C in line 5 instead of 3.

The last context is simply A
(5)−→C.

The stack cache occupancy at the entry of C varies for all three context, and can be either 4, 3, or 2
for the three context respectively. Note the difference between first context (calling C on line 3 of B)
and the second (calling C on line 5). When the first call executes, a part of A’s stack data is already
evicted to the main memory and C’s reserve will evict all of A’s data as well as one word of B’s stack
frame. When the execution reaches the second call all the data of A remains evicted, while all 3
blocks of B where reloaded by the ensure instruction on line 4.

The displacement of C, on the other hand, is 2 for all three calling contexts.

However, when we take a closer look at Example 4, we notice that not all ensure instructions are
needed for the correct execution of the program. The ensure on line 6 of function A, for instance, is
useless, as we know that A’s stack frame is completely loaded back into the stack cache on line 4 and
remains present even during the execution of C.

In general, it is not necessary to load back the full stack frame, or even to emit any sens instruction
at all either if it can be shown that the stack frame is not spilled by the callee, or if not all stack slots
are used between two call sites or before a return. We therefore implemented an optimisation pass
that downsizes or even removes sens instructions where possible, which we present in the following.

4.2.1 Removing Ensure Instructions

The key observation to perform such an optimisation is that the amount of data loaded by an ensure
can be bounded by examining the maximum stack cache displacement on the program paths between
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(1) func A() {
(2) sres 2;
(3) B();
(4) sens 2;
(5) C();
(6) sens 2
(7) sfree 2;
(8) }

(a) Code of A

(1) func B() {
(2) sres 3;
(3) C();
(4) sens 3
(5) C();
(6) sens 3
(7) sfree 3;
(8) }

(b) Code of B

(1) func C() {
(2) sres 2;
(3) sfree 2;
(4) }

(c) Code of C

A()

B()

C()

(d) Call Graph

Figure 9: A simple program consisting of three functions and their calling relations.

the ensure and its corresponding reserve operation. If the stack cache is larger than the sum of the
ensure’s size and the maximum displacement, the ensure can be removed without any side-effect on
the program’s semantics.

Computing the Maximum Displacement: The maximum displacement can be computed in two
phases by (1) propagating the maximum displacement from the leaves of the call graph up towards
the root and (2) by propagating information on the maximum displacement locally within functions.

In case of an acyclic call graph (without any recursion) the propagation can be done by a simple
traversal of the graph in post order, i.e., the maximum displacement is computed for all children of a
call graph node before it is computed for that node. This corresponds to a longest path search through
a weighted call graph, where edges are assigned a weight representing the amount of space reserved
in the calling function. Cyclic call graphs can then be handled by representing the longest path search
through an integer linear program (ILP) that is solved by a standard ILP solver (e.g., CPLEX). The
Patmos compiler currently uses a mixed approach that solves ILP problems for the strongly connected
components (SCCs) of the call graph only, i.e., cyclic regions of the graph.3 Without any additional
constraints these problems are unbounded, i.e., would result in an infinitely large displacement. We
thus allow the user to supply user-specified bounds on the recursion depth for individual SCCs to the
compiler using a command line option (-mpatmos-stack-cache-analysis-bounds). We
resort to a simple post order traversal for the remaining graph, where the SCCs are logically collapsed
into a single node.

The second phase propagates the maximum displacement from call instructions through the control-
flow graph (CFG) of individual functions to ensure instructions. This is done by iteratively propa-
gating the maximum displacement from one node in the CFG to its successors until a fixed-point is
reached, i.e., we perform a simple data-flow-like analysis. The propagation only has to consider call
instructions (call) as well as ensure instructions (sens), since all other instructions cannot change
the displacement. Note that the iterative processing also accounts for effects on the displacement
caused by ensure operations that are about to be eliminated. Figure 10 summarises the propagation
rules of this optimisation, where IN and OUT denote the maximum displacement before and after
an instruction i. Figure 10a shows the propagation rule for call instructions, which states that the

3Formally, a strongly connected component of a directed graph G(V,E) is a maximal set of vertices C ⊆ V such that
for every pair of vertices u and v, there is a directed path from u to v and a directed path from v to u.
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IN: x

i: call func

OUT: max (x, disp(i))

(a) call

IN: x

i: sens y

OUT: min (x, |SC| − y)

(b) sens

IN: max (x, y)

OUT: xOUT: y

i: ...

(c) control joins

Figure 10: Propagation rules for the function-local propagation of the maximum stack cache dis-
placement.

maximum of the initial displacement x and the displacement caused by the call instruction i (disp(i))
is propagated to the next instruction. Figure 10b shows a similar rule for ensure instructions. Since
the ensure might refill the stack cache from memory, the displacement might effectively be reduced,
thus the minimum of the initial displacement and the maximum displacement allowed by the ensure
is propagated onward. Note that |SC| denotes the size of the stack cache. At control-flow joins the
maximum displacement is propagated as indicated by Figure 10c.

Example 5. Consider again the program from Figure 9. The computation on the control-flow graph
first visits the function C, which trivially gives a maximum displacement of 2. Next, function B is
visited, which adds the displacement of C and the local displacement of B, bounded by the size of the
stack cache 4. The displacement of B thus is min(4, 3 + 2).

Using these two displacement values, we can continue with the second phase of our approach on
function A. The propagation starts at A’s entry with a displacement of 0. When the call on line 3
is reached the displacement is known to be still 0 before the call. The displacement of the called
function B is 4, we thus derive that the entire content of A’s stack frame has been evicted before the
ensure on line 4. The ensure thus cannot be eliminated. After the ensure A’s stack frame has been
reloaded and the displacement now is 2 before the call to C. Since the displacement of that function is
also 2 the displacement remains unchanged when reaching the ensure instruction on line 6. Since the
value of the displacement and the argument of the ensure are equal to the stack cache size (2+2 = 4),
this ensure instruction can safely be removed.

4.2.2 Downsizing Ensure Instructions

Apart from the elimination technique described in the previous section, we can also downsize the
ensure instructions, i.e., reduce the number of ensured words, in case some data elements on the
current stack frame are not live. This applies to data elements that are not used between the ensure and
the next ensure, between the ensure and the next call which causes the refilled data to be spilled again,
or between the ensure and a subsequent free instruction. The optimisation can also be formalised
as an iterative backward data-flow problem, that propagates the size of the data area currently live
in the stack cache from stack accesses (loads and or stores to the stack cache) up towards ensure
instructions. The propagation rules only need to consider call instructions, stack load, stack store, as
well as ensure instructions. The propagation rules are similar in structure to those in Figure 10 (we
will not show them here for brevity).
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Figure 11: Ratio of ensure instructions eliminated (higher is better).

Note that the Patmos compiler performs the downsizing before the elimination of ensure instructions,
as downsizing often enables the elimination of additional ensures.

4.2.3 Evaluation

We applied the elimination technique described in the previous section to a set of embedded bench-
marks from the MiBench collection [4]. Table 5 shows the total number of ensure instructions in
the various benchmarks, as well as the number of ensure instructions successfully eliminated (and
remaining) after the analysis for a configuration of the Patmos processor with a stack cache of 2048
bytes. As can be seen almost all ensure instructions are eliminated, even in the worst-case 94% of the
ensures are successfully eliminated. This indicates that our elimination strategy, even though simple,
is very effective.

4.2.4 Future Directions

We are currently exploring ways to extend the notion of the two concepts of stack cache occupancy
and stack cache displacement to more general models, where reserve and free operations can be
placed more freely within the program’s code. Well-formed programs, where each path contains
well-nested sequences of reserve and free instructions having matching arguments, are promising
candidates for this work. On a related note, we are exploring optimisations that allow the sinking of
reserve instructions (move them down on the CFG) and the hoisting of free instructions (move them
up on the CFG) within the program so as to reduce the worst-case spilling on critical paths using the
criticality metric [2].
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Benchmarks Total Remaining Eliminated Ratio
rawcaudio 99 1 98 0.99
rawdaudio 99 1 98 0.99

crc-32 358 0 358 1
fft-tiny 842 1 841 1

ifft-tiny 842 1 841 1
dbf 368 1 367 1
ebf 368 1 367 1

drijndael 358 0 358 1
erijndael 354 0 354 1

sha 360 0 360 1
rsynth-tiny 1,924 17 1,907 0.99

search-large 311 0 311 1
search-small 311 0 311 1

dijkstra-small 588 1 587 1
patricia 631 3 628 1

basicmath-large 839 0 839 1
basicmath-small 819 0 819 1

basicmath-tiny 826 0 826 1
bitcnts 365 1 364 1

qsort-small 590 2 588 1
csusan 760 1 759 1
esusan 760 1 759 1
ssusan 760 1 759 1

cjpeg-small 1,693 1 1,692 1
djpeg-small 1,546 1 1,545 1

ansi2knr 397 1 396 1
jpegtran 1,425 1 1,424 1

rdjpgcom 387 1 386 1
wrjpgcom 416 1 415 1

lame 3,902 0 3,902 1
tiff2bw 1,531 83 1,448 0.95

tiff2rgba 2,151 126 2,025 0.94
tiffdither 1,533 77 1,456 0.95

tiffmedian 1,486 80 1,406 0.95

Table 5: Total number of ensure instructions as well as number of eliminated and remaining ensure
instructions after optimisation.
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5 Requirements

We now list the requirements from Deliverable D1.1 that target the compiler work package (WP5)
and explain how they are met by the current version of the tool chain or how they will be addressed
in the third year of the project. NON-CORE and FAR requirements are not listed here.

Items for which there has been progress since D5.3 are highlighted in bold font.

5.1 Industrial Requirements
P-0-505 The platform shall provide means to implement preemption of running threads. These

means shall allow an operating system to suspend a running thread immediately and make
the related CPU available to another thread.

The compiler supports inline assembly, which can be used to implement storing and restoring
threads. Further support will depend on the details of the implementation of preemption in the
Patmos architecture, developed in the scope of interrupt virtualisation by our project partners
(Task 2.6). There is no specific task devoted to the integration of preemption for TUV. Though,
we adapted the ISA to allow storing and restoring the contents of the stack cache to and from
the external memory. We adapted the compiler and the C library to support compilation of
the RTEMS operating system, which features context switching and POSIX threads.

P-0-506 The platform shall provide means to implement priority-preemptive scheduling (CPU-local,
no migration).

The compiler supports inline assembly, which can be used to implement storing and restoring
threads. Further support will depend on the details of the implementation of preemption in the
Patmos architecture, developed in the scope of interrupt virtualisation by our project partners
(Task 2.6). There is no specific task devoted to the integration of preemption for TUV. Though,
we adapted the ISA to allow storing and restoring the contents of the stack cache to and from
the external memory. We adapted the compiler and the C library to support compilation of
the RTEMS operating system, which features context switching and POSIX threads.

C-0-513 The compiler shall provide means for different optimisation strategies that can be selected
by the user, e.g.: instruction re-ordering, inlining, data flow optimisation, loop optimisation.

In the LLVM framework, optimisations are implemented as transformation passes. The LLVM
framework provides options to individually enable each transformation pass, as well as options
to select common optimisation levels which enable sets of transformation passes.

C-0-514 The compiler shall provide a front-end for C.

The clang compiler provides a front-end for C. The compiler has been adapted to provide
support for language features such as variadic arguments and floating point operations on
Patmos.

C-0-515 The compile chain shall provide a tool to define the memory layout.

The tool chain uses gold to link and relocate the executable. The gold tool supports linker
scripts, which can be used to define the memory layout.
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S-0-519 The platform shall contain language support libraries for the chosen language.

The newlib library has been adopted for the Patmos platform, which provides a standard
ANSI C library.

A-0-521 The analysis tool shall allow defining assumptions, under which a lower bound can be
found, i.e.a bound that is smaller than the strict upper bound, but still guaranteed to be >=
WCET as long as the assumptions are true (e.g.instructions in one path or data used in that
path fit into the cache).

We adapted the LLVM compiler framework to automatically emit flow facts and value facts
that are generated by the internal analyses performed by the compiler. The tool chain also
supports generation of flow facts from execution traces. The compiler is able to emit debug
information which is used by the aiT WCET analysis tool to retrieve source code level flow
annotations. Flow annotations at binary level can be used to add additional flow constraints
to the WCET analysis.

S-0-522 Platform and tool chain shall provide means that significantly reduce execution time (e.g.:
cache, scratchpad, instruction reordering).

The LLVM framework provides several standard optimisations targeting execution time, such
as inlining or loop unrolling. The data scratchpad memory can be accessed with dedicated
macros, which allow the programmer to manually utilize this hardware feature. Instruction
reordering is performed statically at compile-time to reduce the number of stall cycles in the
processor. The stack cache provides a fast local memory to reduce the pressure on the data
cache and to obtain a better WCET bound. The compiler features WCET analysis driven
optimisations and optimisations utilising the Patmos hardware features that automatically
further reduce the WCET bound.

P-0-528 The tool chain shall provide a scratchpad control interface (e.g.: annotations) that allows
managing data in the scratchpad at design time.

The SPM API has been integrated into the tool chain, which contains both low-level and high-
level functions that allow copying data between SPM and external memory and to use the SPM
as buffer for predictable data processing, respectively. Accessing data items on the SPM is
possible with dedicated macros that use the address space attribute, which is translated to
memory access instructions with the proper type in the compiler backend.

C-0-530 The compiler may reorder instructions to optimise high-level code to reduce execution time.

Instructions are statically reordered to make use of delay slots and the second pipeline, and
to minimise stalls during memory accesses.

C-0-531 The compiler shall allow for enabling and disabling optimisations (through e.g.: annotations
or command line switches).

In the LLVM framework optimisations are implemented as transformation passes. The LLVM
framework provides options to individually enable each transformation pass, as well as options
to select common optimisation levels which enable sets of transformation passes.

C-0-539 The compiler shall provide mechanisms (e.g.: annotations) to mark data as cachable or
uncachable.
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Variables marked with the _UNCACHED macro are compiled using the the cache bypass in-
structions provided by Patmos to access main memory without using the data cache.

S-0-541 There shall be a user manual for the tool chain.

All tool chain source repositories contain a README.patmos file, which explains how to
build and use the tools provided by the repository. Additional documentation of the tool chain
can be found in the patmos-misc repository and in the Patmos handbook in the patmos
repository. Further information about the LLVM compiler can be found in the LLVM user
guide.4

5.2 Technology Requirements

C-2-013 The compiler shall emit the necessary control instructions for the manual control of the
stack cache.

The compiler emits stack control instructions to control the stack cache, so that data can be
allocated in the stack cache. The compiler employs optimisation to reduce the number of
emitted stack control instructions.

C-4-017 The compiler shall be able to generate the different variants of load and store instructions
according to their storage type used to hold the variable being accessed.

The compiler backend supports all variants of load and store instructions that are currently
defined by the Patmos ISA at the time of writing. Support for annotations to select the memory
type for memory accesses is provided by dedicated macros.

C-4-018 The storage type may be implemented by compiler-pragmas.

Support for annotations to select the memory type for memory accesses is provided by dedi-
cated macros.

C-5-027 The compiler shall be able to compile C code.

The clang compiler provides a front-end for C. The compiler has been adapted to provide
support for language features such as variadic arguments and floating point operations on
Patmos.

C-5-028 The compiler shall be able to generate code that uses the special hardware features provided
by Patmos, such as the stack cache and the dual-issue pipeline.

The compiler uses special optimisations to generate code that uses the method cache, the stack
cache and the dual-issue pipeline.

C-5-029 The compiler shall be able to generate code that uses only a subset of the hardware features
provided by Patmos.

All code generation passes that optimise code for the Patmos architecture, such as stack cache
allocation and function splitting for the method cache, provide options to disable the optimisa-
tions and thus emit code that does not use the special hardware features of Patmos.

4http://llvm.org/docs/
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C-5-030 The compiler shall support adding data and control flow information (i.e.: flow facts) to the
code, e.g.: in form of annotations.

Our tool chain extracts flow information from the code automatically and provides the infor-
mation to the WCET analysis. Furthermore, because the compiler emits debug information,
the capabilities of aiT to process annotations on the source code can be utilised.

C-5-031 The compiler shall provide information about potential targets of indirect function calls and
indirect branches to the static analysis tool.

The compiler emits internal information such as targets of indirect jumps for jump tables.
The tool chain provides means to transform this information to the input format of the WCET
analysis tool.

C-5-032 The compiler shall pass available flow facts to the static analysis tool.

The compiler emits internal information such as targets of indirect jumps for jump tables.
Additional value facts and flow facts are emitted by the compiler based on information gen-
erated by internal analyses of the compiler. The tool chain provides means to transform this
information to the input format of the WCET analysis tool.
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6 Conclusion

In this deliverable we presented improvements to the compiler and WCET analysis integration that
tighten the WCET analysis results, as well as optimisations that use the information from the WCET
analysis to reduce the WCET bound of tasks. We also presented an optimisation that reduces the
costs of controlling the Patmos stack cache.

Since WCET analysis, compiler analyses and compiler optimisations are usually not performed on
the same code representations, it is necessary to relate code representations at different optimisation
levels in order to be able to transfer information between analyses and compiler passes. We imple-
mented a framework for exporting and importing analysis results that creates a mapping between
code representations without the need to adapt or disable existing compiler passes. We developed
and implemented control-flow relation graphs that are used to map LLVM bitcode to the generated
machine code and to transform flow constraints. By storing not only the analysis results but also the
corresponding code representations as PML files, relation graphs can be constructed at any time to
relate the analysis results to the code representations under optimisation.

We use this framework to export symbolic loop bounds, address information of memory accesses and
stack cache occupancy information from the compiler to the WCET analysis in order to improve the
precision of the WCET analysis.

In turn, the WCET analysis results are imported into the compiler using the same framework that is
built around the PML file format and the Platin tool kit. This import enables leveraging the industry
standard WCET analysis tool aiT as an external analysis to drive WCET-oriented code optimisations.

The compiler uses feedback from the value analysis to minimise the number of cache conflicts in the
cache analysis by emitting cache bypass loads for unknown memory accesses. In our benchmarks,
this optimisation is able to reduce the WCET bound by up to 60%. The WCET timing information of
the WCET analysis is used to calculate criticalities, which in turn are used to drive a WCET oriented
function splitter and if-converter.

Finally, we presented the instruction scheduler for the Patmos ISA, as well as a stack cache optimisa-
tion pass which is able to downsize or remove almost all stack ensure instructions in our benchmarks.
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