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Executive Summary

This document is deliverable D 3.5 Report on Impact of Asynchronicity on Predictability of the NOC
of work package 3 of the T-CREST project, due 24 months after project start as stated in the Descrip-
tion of Work.

The hardware implementation of the message-passing NOC is described in deliverable D 3.4 that is
also due at month 24. The scope of this deliverable, D 3.5, is the timing behavior of the NOC as seen
from an application programmer’s point of view.
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Figure 1: (a) An example T-CREST multi-processor platform using a 2 D mesh NOC topology. (b)
Details of a processor core and a network interface (NI). (c) Timing architecture of the T-CREST
NOC: example with 6 processor cores connected to a NOC consisting of 6 routers and 6 NIs.

1 Introduction

The architecture and implementation of the message passing NOC is addressed in project deliverable
D 3.4 [2] and scientific publications [5, 3].

Figure 1 shows the architecture of the T-CREST platform. The figure focusses on the message
passing NOC and shows its most important features. The figure omits the memory controller and
the processor to memory controller communication that is covered in WP4 of the T-CREST project.

Figure 1(a) shows an example platform where a set of processor cores are connected by the NOC
that forms a 2D-mesh topology. The NOC uses packet switched routers and links. Processor cores,
each with some amount of private memory, are connected to the structure of routers and links using
network interfaces (NIs). In general, the role of a NI is to bridge between the packet switching
interfaces of the routers and links and the read/write transaction interfaces of the processors cores.

The T-CREST NI use a micro-architecture where the DMA controllers, that are normally part of
the processor cores, are integrated with the TDM-scheduling mechanism in the NOC. This novel
micro-architecture results in a small and efficient implementation, that avoids resources for buffering
and flow control [5]. The routers and links in the NOC are implemented as self-timed asynchronous
circuits [2, 3]. The NIs and the processor cores are conventional clocked synchronous circuits. Fig-
ures 1(b) and 1(c) will be explained in the following sections 2 and 3.

From an application programmers point of view the NOC offers asynchronous message passing be-
tween processor cores. The communication channels that are used for this message passing are
implemented as (virtual) end-to-end circuits, and the mechanism used to implement these virtual
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end-to-end channels is statically-scheduled time division multiplexing (TDM) [4]. This is a straight-
forward and easy to analyze approach to obtain time predictability. In addition, it avoids run-time
arbitration and data buffering in the routers in the NOC and this makes the routers very simple and
efficient.

Intuitively the use of asynchronous routers could potentially complicate the time-predictability of
the NOC, and thereby also complicate worst-case execution time (WCET) analysis of an application
executing on the platform. For this reason the T-CREST Document of Work includes this deliverable,
D 3.5.

As will be clear from the following, the fact that the routers are asynchronous is completely invisible
at the interface between a processor core and its NI. And as all NIs are synchronous circuits operating
at the same clock frequency (with only some bounded amount of clock skew) all timing analysis relate
to the same clock signal; a property that greatly simplifies WCET analysis.

The rest of this document is organized as follows: Section 2 presents the architecture and implemen-
tation of the NOC – as seen in Figure 1(b) – in more detail. Section 3 elaborate on the timing aspects
of the design, as illustrated in Figure 1(c). Section 4 provides the information necessary for an ap-
plication programmer to assess the NOC’s contributions to the worst-case execution time (WCET)
of an application. Finally Section 6 concludes the report. For a review of the requirements that are
relevant for the NOC developed in WP3, the reader is referred to deliverable D 3.4.

2 Architecture and Implementation of the NOC

Figure 1(b) shows details of a NI and a processor core. A processor core consists of the processor
itself and some (private) instruction and data caches as well as a private scratch-pad memory (SPM).
The transfer of a message across a communication channel (virtual circuit) is driven by a DMA
controller associated with the specific channel. The DMA-controller is in the source end, and it is
capable of transferring a block of data from the local SPM and into the SPM of the processor at the
destination end of the communication channel. The virtual end-to-end circuits that implement the
channels are defined during an initialization phase where the NOC is configured.

A unique feature of the T-CREST NOC design is that the SPMs are dual ported and that the DMA
controllers are included in the NIs as shown in Figure 1(b). This allowed us to merge the DMA
controllers and the TDM scheduling such that data is transferred from the source SPM, across the
NOC, and into the target SPM, without any buffering or flow control at all. Compared to other NOC
designs that provide similar functionality, this more than halves the size if the NI implementation,
and it also greatly simplifies timing analysis. The use of dual ported SPMs allows program execution
on the processor cores to overlap with the DMA transfers. It is also an efficient way to implement
clock domain crossing.

The NOC uses source routing and packet-switching. A packet consists of three phits; a header phit
and two payload phits. A phit is 32 bits of data and a 3 bit tag (as explained in [2, 3]). The header phit
consists of a bit pattern representing the route from source to destination and the address in the target
SPM where the payload data is to be written. In every clock cycle a NI transmits and receives one
phit from the packet switched structure of routers and links. In time-slots where no communication is
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scheduled, the NI transmits and receives so-called void-phits. Further details are explained in D 3.4
[2]. The essence of this is that a block of data is transferred in atoms of two 32 bit words, and that it
takes 3 clock cycles for a NI to send and/or receive a packet with this payload.

Before any message passing can be done it is necessary to initialize the slot tables and the DMA tables
in the NIs. This is part of the initialization of the platform that is performed before the execution of
the application starts, and it is not included in the analysis presented below.

3 Timing Perspective on the Implementation of the NOC

The requirement N-3-043 Timing Organisation listed in deliverable D 1.1 states that the NOC shall
support a globally-asynchronous locally-synchronous (GALS) style design. This requirement is in-
deed satisfied by the NOC architecture described above and illustrated in Figure 1. As seen in Fig-
ure 1(a) the packet switched structure of routers and links that spans the whole platform is imple-
mented using self-timed asynchronous routers and links. This avoids clock-distribution and clock
skew problems at the global level, and clocked synchronous operation is confined to within a sin-
gle NI and/or a single processor core. Figure 1(c) emphasizes this view: an asynchronous packet-
switched network to which a number of NI-processor pairs are connected.

The NIs are conventional clocked synchronous circuits. The clock signals used in the different NIs
originate from the same source/oscillator, but the architecture allow some clock skew (possibly vary-
ing but bounded) among the NIs. The terms mesochronous1 or multi-synchronous2 denote this situa-
tion. As a result of this, all NIs operate at the same rate. This allows a straightforward implementa-
tion of the statically-scheduled time-division-multiplexed transmission of data across the NOC. The
clock-skew between the NIs is absorbed by the asynchronous routers and links.

The processor cores are also conventional clocked synchronous circuits. The processor cores may
use independent clocks. This allows the use of frequency scaling to save power. It also allows the use
of different processors with different speeds, should this be needed. To support this, a clock-domain
crossing module, not shown in Figure 1(b) must be added at the interface marked “OCP” between a
processor core and the NI. This clock domain crossing will add latency to the read/write-transactions
used to set up the DMA transfers. For the actual data that is transmitted across the NOC the use of
dual-ported SMPs provides clock-domain-crossing without any additional latency and without any
additional hardware.

Altogether the architecture presented above is a so-called globally-synchronous locally-asynchronous
(GALS) design that is robust to timing variability at the global level.

The timing organization described here and illustrated in Figure 1(c) is the most general and flexible
instance of the T-CTRET platform that one can think of. A range of simpler timing organizations are
possible. Below we list and describe the most obvious implementations. For completeness the list
repeats the timing-organization just described. In all four implementations the clock signals used in
the NIs originate from the same source.

1same frequency, fixed skew
2same frequency, varying but bounded skew

Page 4 Version 1.0
Confidentiality: Public Distribution

23 September 2013



D 3.5 Report on Impact of Asynchronicity on Predictability of the NOC

Two implementations use a self-timed asynchronous NOC and offer some tolerance towards clock
skew at the global level, and these are the target of the T-CREST project, i.e., the design delivered in
D 3.3 and documented in D 3.4 [2]:

1. A globally-asynchronous locally-synchronous (GALS) implementation where each processor
core operate using its own independent clock, where all the NIs are clocked by the same clock
signal, possibly with some bounded but unknown skew (i.e., the NIs are multi-synchronous),
and where the routers are implemented as self-timed asynchronous circuits. This implemen-
tation, illustrated in figure 1(b), allows independent frequency scaling in the processor cores
and/or the use of different processors with different clock frequencies. In addition it offers
tolerance towards clock skew at the global level.

2. A globally multi-synchronous implementation where each processor core use the same clock as
the NI to which it is attached and where the routers are implemented as self-timed asynchronous
circuits. This implementation tolerates a bounded amount of clock skew between processor-NI
pairs.

A third implementation that could be relevant for testing purposes, but not for a practical implemen-
tation, in which all processor cores and NIs are clocked synchronously:

3. An implementation where all the processors and NIs operate synchronously and where the
routers are implemented as self-timed asynchronous circuits.

Finally we mention that for FPGA prototyping, for software development, and perhaps for imple-
mentation of small systems, the following is relevant:

4. A globally-synchronous implementation where the same global clock is used in all the pro-
cessors as well as in all the routers and NIs that constitute the NOC. It is not a deliverable of
the T-CREST project, but for completeness we mention that the simulation model delivered in
D 3.2 [1] was described as RTL-level VHDL-code. Consequently it is possible to synthesize a
globally-synchronous implementation of the T-CREST platform, should this be desired.

From the point of view of WCET analysis there is very little difference between the above mentioned
four implementations – their timing characteristics in this context relate to the clock used in the NIs
and in all four cases the clock signals used in the NIs originate from a single clock oscillator.

4 Quantifying the NOC’s Contribution to the Execution Time of
an Application

By the term “application” we understand a set of tasks that execute on a set of processors, and that
communicate using asynchronous message passing as supported by the DMA-driven block-writes
implemented by the NOC.
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In the context of a single task executing on a single processor the situation is simple: some load
and store instructions target the NI where they initiate or monitor progress of the DMA-driven block
transfers. To estimate the WCET of the task, all that needs to be known about the NOC, is the number
of processor clock cycles it takes to execute a load instruction and a store instruction that targets the
NI.

In the context of the whole application the situation is more challenging. In this report we provide
the information necessary to estimate the latency of a block transfer, from the transfer is initiated
by the processor core setting up a DMA-controller in its NI, and until all data has been transferred
across the NOC and is available in the SPM in the target processor core. This can be precisely
estimated from characteristics of the implementation of the NOC and from the application-specific
TDM schedule that drives the transmission of data across the NOC. To what extent this latency
affects the overall execution time of an application, consisting of a set of communicating tasks, is
more difficult to assess. It depends on how the application is programmed and to what extent the
application programmer has been able to hide the communication latency, and it is therefore outside
the scope of this document where focus is on the NOC. As the clock signals used in all NIs originate
from the same clock oscillator, it follows that all DMA-transfers in the entire platform take place
at the same rate. This simplifies the WCET analysis and it is an additional benefit of the micro-
architecture of the NI.

Below we elaborate on these two perspectives on the NOC’s contribution to WCET-analysis:

WCET-analysis of a single task executing on a single processor core: The application code exe-
cuting on a processor includes some load and store instructions that set up DMA-transfers and
monitor the status of ongoing DMA-transfers. These load and store instructions cause single-
word read and single-word write transactions across the interface marked OCP between the
processor core and the NI, see figure 1(c). With the specific NI-design described in D 3.4, each
read or write transaction has a latency of 1 or 2 NI clock cycles, i.e., a worst case of 2 cycles.
This assumes that the processor core and the NI are synchronous, and corresponds to the second
timing organization described in the previous section. If the processor cores use independent
clock signals – the first timing organization described in the previous section – the worst case
latency of a clock domain crossing has to be added to each read or write transaction. Assuming
the frequency of the clock signals used in a processor core and a NI differ by at most a factor
of two, a safe worst-case estimate is that a single-word write-transaction and a clock domain
crossing has a latency of 10 processor clock cycles and that a single-word read-transaction and
a clock-domain crossing has a latency of 15 processor clock cycles. Precise figures depend on
the ratio between the frequency of the NI-clock and the processor-clock as well as the exact
design of the clock-domain crossing module.

Latency of a DMA-driven block write: This is the time from a DMA-transfer is set up and until
the block of data has been transferred from the local SPM, across the NOC and into the SPM
of the target processor core. This accounts for most of the traffic between the processor and the
NOC. As the DMA-driven block-transfer happens in parallel with program execution on the
processor core, it is a property of the way the application is programmed, to what extent this
latency is visible and influences the WCET of the application. If the application programmer
implements double-buffering, that overlaps computation and communication, it may even be
possible to hide the latency of the block transfers. The degree to which this is possible depends
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on the whether or not it is possible to reserve the necessary extra slots in the TDM-schedule
without affecting the timing of the entire system.

Once the DMA-transfer has been set up, the latency of transferring a block of data from the
local SPM, across the NOC and into the SPM of a remote processor core can be calculated as
follows:

L = TWait + TSend + TNOC

TWait is the worst-case wait for the first available slot in the TDM-schedule reserved for the
DMA-transfer. A worst-case estimate of this is the maximum time separation between two
slots reserved for the same channel within a sequence of TDM-schedule periods.

TSend is the time it takes to send the entire block. Assuming a block of some size, this can be
estimated as the block size (measured in 32 bit words) multiplied by the period of the TDM
schedule and divided by the number of 32 bit words transmitted during one period of the sched-
ule. This number is 2 (words per packet) times the number of slots reserved in a schedule
period.

TNOC is the time it takes the last data-phit of the last packet to traverse the NOC. In the current
implementation of the asynchronous NOC the links are not pipelined and the pipeline depth
of the routers is two phits per router. A worst-case estimate of TNOC is therefore two times
the number of routers in the longest path between any two processor cores. In an N × N 2D
bi-torus this is 2 · dN−1

2
e · dN−1

2
e NI-clock-cycles.

5 Requirements

The requirements listed in deliverable D1.1 that are relevant for the NOC are listed and commented
on in deliverable D 3.4 and are not repeated here.

6 Conclusion

This report made several contributions: It showed that the use of asynchronous routers has no impact
on the time-predictability of the NOC, and it provided the information necessary for an application
programmer to assess the NOC’s contributions to the worst-case execution time (WCET) of an ap-
plication.

One perspective on the latter considers a single task that execute on a single processor core. Here the
time base is the clock used in the processor core and the contribution of the NOC is the latency of the
read and write transactions caused by the load and store instructions that target the NI and that set up
the DMA transfers. This latency may include a clock domain crossing.

Another perspective considers an application consisting of a set of tasks executing on a set of proces-
sors that communicate using asynchronous message passing as provided by the DMA-driven block-
transfers implemented by the NOC. Here the time base is the clock used in the NIs, and the report
provided the information necessary to calculate the latency of a block transfer. To what extent this
affects the WCET of an application depends on how the application is programmed.
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