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D3.6 – Final Operating System with Real-Time Support

Executive Summary

This document constitutes deliverable 3.6 - Final Operating System with Real-Time Support of work
package 3 of the JUNIPER project. It consists of the final release of the enhanced Linux kernel with
real-time bandwidth reservation scheduling support.

The purpose of this deliverable is to describe the content of the final implementation of the Operating
System used in the JUNIPER project. It presents the main differences of the real-time improvements
respect to deliverable 3.2 with a particular focus on the new included patch and its interface. Sub-
sequently it presents some experiments useful to shows the functionality in terms of reservation for
groups of tasks. A final appendix describes the procedure needed to create a working copy of the
enhanced Operating System.

Deliverable 3.6 which is described in this document is the final version of the Operating System with
Real-Time Support and extends the previous prototype, which has been described in Deliverable 3.2 -
Prototype Operating System with Real-Time Support. Deliverable 3.1 - Operating System Real-Time
Support Definition is a prerequisite for reading the present document.
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D3.6 – Final Operating System with Real-Time Support

1 Real-Time Enhancements Overview

This section provides an overview of the real-time enhancements contained in the final version of the
operating system. The main real-time patches are listed below.

SCHED_DEADLINE[2] provides CPU reservation capabilities at the task level by implementing the
Constant Bandwidth Server (CBS) plus the Earliest Deadline scheduling algorithms. It also provides
an admission control strategy to guarantee that the timing constraints are not jeopardized.

Bounded-Delay Multipartition (BDM)[3] extends the SCHED_DEADLINE patch by providing CPU
reservation for groups of real-time (SCHED_FIFO and SCHED_RR) threads. A more detailed de-
scription of this patch is provided in Section 2.

RT_PREEMPT [1] reduces the Linux kernel latencies by replacing most kernel spin-locks with mu-
texes that support Priority Inheritance (PI) and by moving interrupts and software interrupts to kernel
threads. Moreover, it converts the old Linux timer API into separate infrastructures for high resolu-
tion kernel timers.

The Budget Fair Queueing (BFQ) [4] provides a fair allocation of disk I/O bandwidth; the amount of
bandwidth actually reserved depends on the number of requests and their relative priorities. BFQ is
highly tunable for both bandwidth and latency via the sysfs infrastructure and it is also compatible
with the cgroup interface.

A kernel module provides the Java Virtual Machine with an API enabling the application processes
to control FPGA accelerators, in terms of loading them, transmitting data and read back them.
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2 Bounded-Delay Multipartition

In this section, we describe the implementation of the Bounded-Delay Multipartition model ([3]) in
the Linux kernel, and we report its first evaluation.

2.1 Implementation

To better describe the BDM implementation, it is useful to recall the notion of virtual platform [3]:
a virtual platform Y on a m processors system is modeled by m functions Yk : R≥0 → R≥0

(k = 1, . . . ,m) where, for each t ∈ R≥0, Yk(t) represents the “minimum amount of CPU time
with parallelism at most k” guaranteed to the application in any (time) interval of length t.

The form of the functions Yk depends on the particular algorithm that the operating system uses to
implement the reservation algorithm. We call this algorithm the root scheduling algorithm, in order
to distinguish it from the local scheduling algorithm used within the application to decide which
threads (among those eligible for execution) are to be executed at a given time-instant.

Following [3], given arbitrary α ∈ Q ∩ [0, 1) and ∆ ∈ Q>0, our implementation provides the capa-
bility to create a virtual platform Y := (Yk)mk=1 such that

Yk(t) ≥ k α ·max {0, t−∆} , for all k = 1, . . . ,m and t ≥ 0.

To achieve this, m new scheduling entities π1, . . . , πm, named virtual processors, are associated with
each virtual platform. Each virtual processor represents a Hard Constant Bandwidth Server (H-CBS);
the (Q,P )-parameters of these servers are given by the transformation

Q =
∆

2 (1− α)
· α,

P =
∆

2 (1− α)
.

Virtual processors are statically allocated to a processor and scheduled in Earliest Deadline
First (EDF) order. On the other hand, the threads of the application executing within these virtual
processors can “migrate” to different processors in conformity with the local scheduling algorithm.
This work considers the case of a Fixed-Priority (FP) scheduling algorithm at the local level.

2.1.1 Root Scheduler

The main data structures involved in the root scheduler implementation are displayed in Listing 1.

A virtual platform is represented as a task_group object; this includes an array of pointers to virtual
processors entities (sched_dl_entity) and an array of pointers to “real-time” run-queues (rt_rq):
as already described, there is one virtual processor entity for each physical processor/CPU; more-
over, conforming to Linux’s current implementation of the FP scheduling policy (rt_sched_class),
each virtual platform mantains a per-CPU (local) run-queue that is used to implement a distributed
global scheduling algorithm (see 2.1.2 below). The “reservation parameters” of a virtual platform
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are encoded in a dl_bandwidth object (and “cached” in the corresponding sched_dl_entity’s):
following the previous notation, Q = dl_runtime (ns) and P = dl_period (ns).

struct dl_bandwidth {
2 raw_spin_lock_t dl_runtime_lock;

u64 dl_runtime;
4 u64 dl_period;

};
6

/* struct for virtual platforms */
8 struct task_group {

struct sched_dl_entity **dl_se;
10 struct rt_rq **rt_rq;

12 struct dl_bandwidth dl_bandwidth;

14 ...
};

16

/* struct for virtual processors */
18 struct sched_dl_entity {

struct rb_node rb_node;
20

u64 dl_runtime;
22 u64 dl_period;

24 s64 runtime;
u64 deadline;

26

int dl_throttled, dl_new;
28 struct hrtimer dl_timer;

30 struct dl_rq *dl_rq;
struct rt_rq *my_q;

32

...
34 };

36 #define dl_entity_is_task(dl_se) \
(!(dl_se)->my_q)

Listing 1: Main data structures.

We remark that the structure sched_dl_entity is already present in mainline Linux, where it is used
to store scheduling entities of SCHED_DEADLINE threads (H-CBSs): our implementation pre-
serves the semantics of its members and augments them with a pointer of type dl_rq (the run-queue
on which the virtual processor or the SCHED_DEADLINE thread is to be queued) and with a pointer
of type rt_rq (the local run-queue “owned” by this virtual processor or NULL for a SCHED_DEADLINE
thread). In particular, the members runtime and deadline represent the current budget and the ab-
solute deadline of the H-CBS server, respectively; also, a timer (dl_timer) is started when the server
exhausts its budget (we say that the server is being throttled) and set to fire at the next replenishment
instant.

Page 4 Version 1.0
Confidentiality: Public Distribution

21 May 2015



D3.6 – Final Operating System with Real-Time Support

The adoption of the same C structure (sched_dl_entity) to represent both virtual processors
and SCHED_DEADLINE threads allowed us to reuse code already available in Linux’s cur-
rent implementation of the SCHED_DEADLINE scheduling policy (dl_sched_class); for ex-
ample, the functions dl_runtime_exceeded, start_dl_timer, dl_timer, enqueue_dl_entity,
dequeue_dl_entity apply to virtual processor entities with minor modifications.

The sched_dl_entity’s of both virtual processors and SCHED_DEADLINE threads that are Ac-
tive (i.e., non-throttled) are enqueued in the same per-CPU red-black trees (from which the name
rb_node) in order of non-decreasing absolute deadline; the macro dl_entity_is_task (line 39)
has been introduced to distinguish entities representing SCHED_DEADLINE threads from entities
representing virtual processors.

The function pick_next_task_dl of the class dl_sched_class has been modified as displayed in
Listing 2: given a (per-CPU) run-queue rq, we first identify the corresponding red-black tree (line 4);
if there is no SCHED_DEADLINE or virtual processor entity in the tree, we return NULL (lines 9-10);
if the tree is not empty, we select the leftmost sched_dl_entity, dl_se, in the tree (line 12). Then, if
the selected entry represents a virtual processor, we return the highest priority real-time job in the cor-
responding local run-queue (lines 14-21); otherwise, the entry must represent a SCHED_DEADLINE
that is returned (lines 24-26). Notice, in particular, that the function pick_next_task_dl can now
return a thread with SCHED_FIFO or SCHED_RR policy.

/*
2 * Extract from: struct task_struct *pick_next_task_dl(struct rq *rq)

*/
4 struct dl_rq *dl_rq = &rq->dl;

struct sched_dl_entity *dl_se;
6 struct task_struct *p;

8 /* dl_nr_total = # of SCHED_DEADLINE threads + # of virtual processors */
if (unlikely(!dl_rq->dl_nr_total))

10 return NULL;

12 dl_se = pick_next_dl_entity(rq, dl_rq);
if (!dl_entity_is_task(dl_se)) {

14 struct rt_rq *rt_rq = dl_se->my_q;
struct sched_rt_entity *rt_se;

16

rt_se = pick_next_rt_entity(rq, rt_rq);
18 /* rt_se != NULL */

p = rt_task_of(rt_se);
20 ...

return p;
22 }

24 p = dl_task_of(dl_se);
...

26 return p;

Listing 2: Scheduling a virtual processor.
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2.1.2 Local Scheduler

The implementation of the local FP scheduling algorithm is based on Linux’s rt_sched_class:
the basic C structures, sched_rt_entity and rt_rq, are mantained to implement a SCHED_FIFO or
SCHED_RR scheduling policy. The major effort consisted in the modification of the Linux’s pull-push
mechanism; this mechanism is used to implement a global or, more generally, an Arbitrary Processor
Affinity (APA) scheduling algorithm. For simplicity we limit the discussion to the case of global
scheduling, but similar considerations apply to the more general case of APA scheduling.

For a virtual platform Y , let SY (t) denote the set of real-time threads assigned to Y which are sched-
uled on any of the m (physical) processors at time t, and let mY (t) be the set of virtual processors of
Y which have been selected by the root scheduler at time t. Then, in the case of global scheduling,
our implementation guarantees the so called Global FP-Invariant (GFPI) property:

If jr is a runnable thread in Y at time t and if jr /∈ SY (t), then

(i) |SY (t)| = |mY (t)|,
(ii) p(j) ≥ p(jr) for each j ∈ SY (t), where p(j) denote the priority of thread j.

In order to preserve this invariant, our implementation introduces the functions
group_pull_rt_task and group_push_rt_tasks. The first is called in pick_next_dl_entity

(line 12 in Listing 2); this function tries to pull a thread on the local run-queue of a virtual proces-
sor by scanning all the run-queues in the corresponding virtual platform. The second is called in
post_schedule on each processor when a scheduling decision is completed; if the “previous” or
the “current” thread is a SCHED_FIFO or a SCHED_RR thread, this functions tries to push threads
from the corresponding run-queue by searching for a “better” run-queue in the platform. As in
mainline Linux, a successful push triggers a rescheduling event on the “remote” processor.

2.1.3 User Interface

Similarly to Linux’s current real-time throttling infrastructure, the implementation of the BDM model
provides an interface based on the CGROUP virtual filesystem.1

A virtual platform can be created by making a sub-directory under the cpu sub-system directory in
this filesystem. Within each such directory, the files “cpu.rt_runtime_us” and “cpu.rt_period_us” are
used to configure the reservation parameters (Q and P respectively) of the virtual platform; threads
can be assigned to the virtual platform by appending their IDs to the file “tasks”.

2.2 Evaluation

In this subsection, we describe two simple experiments illustrating the performance of the pro-
posed solution. First, a runtime test is used to test the correctness of its implementation; then, its
overheads are measured and compared to mainline Linux. We executed the experiments on an In-
tel®Core2™Q6600 quad-core machine with 4GB of RAM, running at 2.4GHz.

1For more information on Linux’s CGROUP, we refer to the relative documentation in the kernel source tree.
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2.2.1 Runtime Validation

For this experiment, we considered the virtual platforms Y1 and Y2 defined in Table 1, and the two
real-time applications defined in Table 2; moreover, we considered the “disturbing” background
workload defined in Table 3.

Virtual # of virt. α ∆
platform processors (ms)

Y1 2 0.72 20
Y2 2 0.22 20

TABLE 1: Platforms for validation.

Virtual i pi Ci Di Ti
platform (ms) (ms) (ms)

Y1 1 13 10 60 60
2 12 140 270 270
3 11 90 520 520

Y2 4 15 40 270 270
5 14 40 520 520

TABLE 2: Applications for validation.

i pi Ci Di Ti
(ms) (ms) (ms)

6 18 25 100 100
7 17 50 200 200
8 16 100 400 400

TABLE 3: Background workload.

rt-app2 has been used to generate the workload and to count the number of deadline misses of
its threads over a time-window of 120 seconds. We ran this experiment 20 times against both our
implementation and mainline Linux. In agreement with the schedulability tests described in D3.1, no
misses is detected when using virtual platforms (since the applications are both schedulable). Table 4
reports the corresponding results when using Linux’s throttling mechanism.

2https://github.com/scheduler-tools/rt-app
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i Throttling Throttling
(no background) (with background)

1 6± 1 210± 9
2 0± 0 222± 6
3 0± 0 5± 1

4 0± 0 0± 0
5 0± 0 0± 0

TABLE 4: Average number of deadline
misses for the applications of Table 2 over
20 runs, when using Linux’s throttling.

According to these results, the Linux’s throttling mechanism is not able to guarantee the real-time
constraints of the applications; this holds even when no background workload is present.

2.2.2 Overhead Measurement

While running the same experiment described in 2.2.1, we measured the execution time of the main
scheduling functions, using ftrace;3 the measured kernel functions are:

(a) pick_next_task_dl,
(b) post_schedule,
(c) enqueue_task_rt,
(d) pick_next_task_rt,
(e) task_tick_rt.

Table 5 and Table 6 report the resulting statistics for the case of virtual platforms and of Linux’s
throttling, respectively.

Function Hits Duration
(×103) (µs)

(a) 155 1.1± 148.4
(b) 155 0.8± 65.3
(c) 147 0.25± 9.1
(d) 18 1.6± 83.7
(e) 29 0.4± 3.5

TABLE 5: Overhead measurements of
kernel functions for the applications of
Table 2, when using virtual platforms.

3See Documentation/trace/ftrace.txt in the kernel source tree.
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Function Hits Average
(×103) (µs)

(a) 2251 0.1± 17.2
(b) 2251 0.7± 51.4
(c) 8 0.7± 1.8
(d) 2251 0.2± 22.1
(e) 29 0.4± 2.2

TABLE 6: Overhead measurements of
kernel functions for the applications of
Table 2, when using Linux’s throttling.

According to these results, the overheads of virtual platforms are comparable with that of Linux’s
throttling mechanism; notice also that virtual platforms result in a lower number of scheduling events
w.r.t. Linux’s throttling.
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A Installation

This Appendix presents the procedure required to obtain a working copy of the Operating System
including the Linux kernel version 3.14 enhanced with the patches previously described (i.e. BDM,
BFQ and PREEMPT_RT). In order to simplify the procedure, the real-time enhanced kernel has
been made available as a package for the current stable version of the Debian Linux distribution
(i.e., version 7 with codename Wheezy).

The Appendix updates the one included in Deliverable 3.2 - Prototype Operating System with Real-
Time Support. In particular, Appendix A.1 describes the actions needed to create a Xen unprivileged
domain running a stable version of the Debian distribution that is compatible with the real-time
enhanced kernel. Instead, Appendix A.2 shows how to install the kernel and the test presented in
Section 2.2.

A.1 Installation of a Debian Wheezy in a Xen unprivileged domain

The unprivileged domain (domU) is created using the xen-tool application while the installation of
the Debian distribution is done with the debootstrap tool.

Note: The procedure is described considering Debian Wheezy also as a host Operating System
(dom0) and the standard installation of Xen version 4.3. The use of other host OS could require
small modifications of Xen configuration files or packages upgrade.

The command shall be executed in a shell with root privileges and creates a new domU with name
name, IP address addr, number of virtual CPUs n which uses its own kernel instead of the one
installed in the host machine.

xen-create-image --pygrub --dist=wheezy --hostname <name> --vcpus=<n>

--ip=<addr>

The default behaviour of the xen server is to start the domU after its creation. If this does not happens,
the dom must be started executing the command:

xm create -f /etc/xen/<name>.cfg

The shell of the running unprivileged domain can be accessed both using the secure shell (SSH) at
the network address ip or using the Xen tool:

xm console <name>
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A.2 Installation of the enhanced Linux kernel

These subsections describe the steps needed to install the kernel enhanced with the real-time patches
described in Section 1 on a Debian Wheezy, which shall be executed in a shell with root privileges.
The following commands retrieve the juniper-private repository using the git tool and execute the
script to perform the installation of the kernel:

# git clone https://github.com/JGYork/juniper-private.git
# cd juniper-private/M30/d3_6
# ./d3_6-install.sh

If the git tool is missing, it can be installed using the command:

apt-get update && apt-get install git

The installation script performs the following actions:

• add the wheezy-backports packages repository to the list of locally available repositories;
• update the kernel to wheeze-backports version, and fulfill any required package dependencies;
• install the real-time kernel in the system;
• install the testing tools described in Section 2.2.
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