Chapter 14: Headphone - Sweep, Loft, and Extrude

This tutorial demonstrates creating surfaces from profile curves using lofts, sweeps, and extrudes. You will learn how to:

- Use sub-object selection to pre-select objects for a command.
- Create a surface from a planar curve.
- Loft, revolve, sweep, and extrude surfaces.
- Cap planar holes to create a solid.
- Draw a helix around a curve.
- Match curve ends.
- Create solid pipes.
- Mirror objects.
- Use layers.
- Use object snaps.

To open the headphone model.

- Open the tutorial model file **Headphone.3dm**.
Create the speaker shell

The speaker shell is created using a lofted surface, a one-rail sweep, a solid extrusion of a planar curve, and a surface fillet. The resulting geometry is joined into one solid.

Loft curves to create a surface

One way to create a surface is to use existing curves as a guide. When lofting through curves, the curves are used as a guide for creating a smooth surface.

1. Turn on Shaded mode in the Perspective viewport.
2. Select the three circular curves, with a crossing selection as illustrated.

3. On the Surface menu, click Loft.
4. At the Drag seam point to adjust... prompt, note the display of the curve direction arrows at the seam points, and press Enter.

 In this model, they are nicely lined up for you, so you do not need to adjust them.
5. In the **Loft Options** dialog box, click **OK** to create the loft.

Extrude the surface edge

Extrude the lofted surface edge in the center to make a magnet housing.

1. Hold the **Ctrl** and **Shift** keys to select the surface edge at the center of the lofted surface.

Note: Selecting objects with the **Ctrl** and **Shift** keys is called *sub-object selection*. Hold the **Ctrl** and **Shift** keys, and click to select polysurface faces; surface and polysurface edge curves; control points; mesh vertices, faces, boundaries, and edges; and objects within a group.

2. On the **Solid** menu, click **Extrude Planar Curve > Straight**.
3. At the **Extrusion Distance**... prompt, type `-2` (notice the negative number) and press **Enter**. This makes a solid cylinder for the magnet housing that is two units thick and extends in the negative direction from the original surface edge.

![Image of a 3D model with a solid cylinder for the magnet housing]

Extract the bottom surface

The cylinder you just created is an extrusion object (solid). To remove the bottom, extract the face.

1. Hold the **Ctrl** and **Shift** keys, and click to select the bottom face.
2. On the **Solid** menu, click **Extract Surface**.
3. At the **Select surfaces to extract...** prompt, select the surface as illustrated and press **Enter**.

4. Press the **Delete** key.

Fillet the edge of the cylinder surface

1. On the **Solid** menu, click **Fillet Edge > Fillet Edge**.
 The current radius setting should be **1**.
2. At the **Select edges to fillet...** prompt, select the edge at the top of the cylinder press **Enter**.

3. At the **Select fillet handle to edit** prompt, press **Enter**.
Join the surfaces

Surfaces that share an edge can be joined into a polysurface. You will join all the surfaces. Since the faces are sometimes hard to see, use two viewports to select them all.

1. **Select** the surface and the polysurface.
2. On the **Edit** menu, click **Join**.

 To join surfaces, you must select surfaces that are adjacent to each other and the edges must match.

Create the padding and cover

Sweep a curve around the edge of the speaker cone to create the padding around the edge of the speaker.

Reset the view

1. On the **View** menu, click **Zoom > Zoom Extents All**.
2. **Hide** or **Delete** all of curves used for the loft.

Sweep a curve along one rail

1. Hold the **Ctrl** and **Shift** keys, and click to select the loft surface outer edge.
2. Hold the **Shift** key and select the rail curve at the top of the speaker as shown.
3. On the **Surface** menu, click **Sweep 1 Rail**.
4. In the **Sweep 1 Rail Options** dialog box, click **OK**.

Make a surface from planar curves

Fill the area at the base of the padding with a planar surface created from the edge of the sweep.

1. Hold the **Ctrl** and **Shift** keys, and click to select the surface edge of the speaker cone as illustrated.
2. On the **Surface** menu, click **Planar Curves**.
 A planar surface is created at the base of the padding.

Create the mounting bracket

The next part is the bracket that holds the speaker to the headband. Since the speaker unit is complete, you can turn its layer off and make the Bracket layer current.

Reset the layers

1. On the status bar, click the **Layer** pane.
2. Make **Bracket** the current layer and turn on **Bracket Shape Curves**.
 Turn all other layers off.

Reset the view

- On the **View** menu, click **Zoom > Zoom Extents All** to zoom in on the bracket shape curves in all viewports.

Extrude a curve into a solid

Use a planar curve to create a solid shape.
1. **Select** the closed curve.
2. On the **Solid** menu, click **Extrude Planar Curve > Straight**.

3. At the **Extrusion distance**... prompt, type `-1` and press **Enter**.

Fillet the edges

Round the sharp edges with a fillet.

1. On the **Solid** menu, click **Fillet Edge > Fillet Edge**.
2. At the **Select edges to fillet**... prompt, type `.2` and press **Enter**.
3. At the **Select edges to fillet**... prompt, click **ChainEdges** and select the front edge of the bracket. The entire edge of the solid should highlight.
4. Press **Enter** to close that edge selection.

5. At the **Select edges to fillet...** prompt, click **ChainEdges** and select the back edge of the bracket.

6. Press **Enter** to close that edge selection.

7. Press **Enter** to finish the edge selection.

8. At the **Select fillet handle to edit** prompt, press **Enter**.
Create a tubular surface from the shape curves

1. **Select** the curve at the top of the bracket.
2. On the **Solid** menu, click **Pipe**.
3. At the **Starting radius...** prompt, type .3 and press **Enter**.
 Before typing the radius, set the command-line options to **Cap=Flat** and **Thick=No**.
4. At the **End radius...** prompt, press **Enter**.
5. At the **Point for next radius** prompt, press **Enter**.

For the second tube

1. **Select** the curve at the bottom of the bracket.
2. On the **Solid** menu, click **Pipe**.
3. At the **Starting radius...** prompt, type .2, and press **Enter**.
4. At the **End radius...** prompt, press **Enter**.
5. At the **Point for next radius** prompt, press **Enter**.

Create the headband

The headband consists of a series of ellipses swept along a path.

Reset the layers

1. On the status bar, click the **Layer** pane.
2. Make **Headband** the current layer and turn on **Headband Shape Curves**.
 Turn all other layers off.

Reset the view

- On the **View** menu, click **Zoom > Zoom Extents All** to zoom in on the headband shape curves in all viewports.

Create an ellipse perpendicular to a curve

1. Turn **Ortho** on.
2. On the **Curve** menu, click **Ellipse > From Center**.
3. At the **Ellipse center...** prompt, click **AroundCurve**.
4. At the Ellipse center prompt, snap to an endpoint of the headband curve. Use the End object snap.

5. At the End of first axis prompt, type 0.5, and press Enter.

6. At the End of first axis prompt, drag the cursor in the x-direction and click.

7. At the End of second axis prompt, type 2, and press Enter.

8. At the End of second axis prompt, drag the cursor in the y-direction and click.

Array a curve along a path

1. **Select** the ellipse.

2. On the Transform menu, click **Array > Along Curve**.
3. At the **Select path curve** prompt, select headband curve.

4. In the **Array Along Curve Options** dialog box, under **Method**, set the **Number of items** to 3.

5. Under **Orientation**, click **Freeform**, and click **OK**.

Scale the ellipse

Scale the center ellipse to make it larger.
1. **Select** the center ellipse.

2. On the **Transform** menu, click **Scale > Scale 1-D**.
 Scale1D stretches an object in one direction.

3. At the **Origin point...** prompt, in the **Perspective** viewport, snap to the center of selected ellipse.

4. At the **Scale factor or first reference point...** prompt, type 2, and press **Enter**.

5. At the **Scale direction...** prompt, drag the cursor in the y-direction and click.
Sweep along one rail

1. **Select** the curves.
2. On the **Surface** menu, click **Sweep 1 Rail**.

 ![Sweep along one rail](image)

3. At the **Drag seam point to adjust...** prompt, examine the direction and seam points of the curves to make sure they are not twisted, and press **Enter**.
4. In the **Sweep 1 Rail Options** dialog box, click **OK**.

Round the headband ends

Use the same ellipse that formed the first cross-section curve for the headband to create a rounded end for the headband. Start by splitting the ellipse in half.

Reset the view

1. On the **View** menu, click **Zoom > Window**.
2. In the **Perspective** viewport, zoom in on the left end of the headband you just created.

Split the ellipse in half

1. **Select** the ellipse.
2. On the **Edit** menu, click **Split**.

![Round the headband ends](image)
3. At the **Select cutting objects...** prompt, click the **Point** option.
4. Turn on **Quad** object snap.
5. At the **Point to split curve** prompts, snap to the two quadrants at the narrow axis of the ellipse.

6. At the **Point to split curve** prompt, press **Enter**.
 The ellipse is split into two halves.
Create a surface of revolution

1. **Select** left half of the ellipse.

2. On the **Surface** menu, click **Revolve**.

3. At the **Start of revolve axis** prompt, snap to the end of the ellipse half.

4. At the **End of revolve axis** prompt, snap to the other end of the ellipse half.
5. At the **Start angle**... prompt, type **0**, press **Enter**.
6. At the **Revolution angle**... prompt, type **180**, press **Enter**.
 A rounded surface is created at the end of the headband.

7. Repeat these steps for the other side of the headband.

Mirror the rounded end

1. Select the rounded end.

2. On the **Transform** menu, click **Mirror**.
3. At the **Start of the mirror plane** prompt, type **0**.
4. At the **End of the mirror plane** prompt, drag the mirror line in the y-direction as illustrated.

Join the surfaces

1. **Select** the surfaces.
2. On the **Edit** menu, click **Join**.

Three surfaces join into one polysurface.
Create the speaker wire

Use a separate layer to create the speaker wire.

Reset the layers

1. On the status bar, click the Layer pane.
2. Make Wire Shape Curves the current layer and turn on Wire. Turn all other layers off.

Reset the view

- On the View menu, click Zoom > Zoom Extents All.

Make the helix

1. On the Curve menu, click Helix.
2. At the Start of axis... prompt, click AroundCurve.
3. At the Select curve prompt, select the long free-form curve.

4. At the Radius and start point... prompt, type 1 and press Enter. This sets the radius for the helix.
5. At the Radius and start point... prompt, set Turns=30 and NumPointsPerTurn=8.
6. At the **Radius and start point...** prompt, in the **Right** viewport drag the cursor to the left and click.

Reset the view

1. On the **View** menu, click **Zoom > Window**.
2. In the **Perspective** viewport, zoom in on the left end of the helix you just created.

Match and join the helix to the end curves

1. On the **Curve** menu, click **Curve Edit Tools > Match**.

2. At the **Select open curve to change - pick near end** prompt, select near the left end of the helix.
3. At the **Select open curve to match - pick near end...** prompt, select near the lower end of the vertical curve.

4. In the **Match Curve** dialog box, under **Continuity**, click **Tangency**, under **Preserve other end**, click **Position**, and click **Join**.

5. **Repeat** steps 3 through 6 for the other end of the helix.
Create the speaker wire

1. **Select** the extended helical curve.
2. On the **Solid** menu, click **Pipe**.
3. At the **Starting radius**... prompt, type **0.2** and press **Enter**.
4. At the **End radius**... prompt, press **Enter**.
5. At the **Point for next radius** prompt, press **Enter**.

Create the second wire

1. **Select** the curve at the top left.
2. On the **Solid** menu, click **Pipe**.
3. At the **Starting radius**... prompt, type **0.1** and press **Enter**.
4. At the **End radius**... prompt, press **Enter**.
Chapter 14: Headphone - Sweep, Loft, and Extrude

5. At the **Point for next radius** prompt, press **Enter**.

Mirror the headphone parts

Mirror the parts to create the parts for the other side of the headphones.

Reset the layers

1. On the status bar, click the **Layer** pane.
2. Turn on all layers.

Reset the view

- On the **View** menu, click **Zoom > Zoom Extents All**.

Delete all the shape curves

1. Press **Esc** to deselect everything.
2. On the **Edit** menu, click **Select Objects > Curves**.
3. Press the **Delete** key.
Mirror the left half of the headphones

1. In the **Front** viewport, window select the objects as illustrated.
 (Select the speaker, bracket, small wire, and rotated ellipse.)

2. On the **Transform** menu, click **Mirror**.
 The **Mirror** command depends on which viewport is active. It uses the construction plane in the active viewport to define the mirror plane. The mirror plane is perpendicular to the construction plane. Two points define the line in this plane about which the selected objects are mirrored.

3. At the **Start of mirror plane** prompt, type 0,0.
 This is the first point of the mirror line.
4. At the **End of mirror plane** prompt, turn on **Ortho**, and drag the mirror line straight up and pick.

Learn more

For a video tutorial showing a more sophisticated modeling method for a headphone set using Rhino's Gumball feature, see: [Modeling stereo headphones](#).