

Guaranteed Component Assembly w i th Round Tr ip Ana lys is

 fo r Energy E f f i c ien t H igh - in tegr i ty Mu l t i - core Sys tems

Project Partners: AENSys, Aicas, Atego, Budapest University of Technology and Economics,

Critical Software, EADS, Intecs, ISEP, Maelardalens University, OTG Solutions,

SINTEF, Thales Communications & Security, The Open Group, University of Florence,

University of Padova

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

Partners accept no liability for any error or omission in the same.

© 2014 Copyright in this document remains vested in the CONCERTO Project Partners.

Project Number 333053

D4.6 – Modelling, analysis and transformation solutions
for logical, physical and virtualised partitioning on mul-

ticore targets - Toolset Initial Version

Version 1.0

18 November 2014

Public Distribution

UPD, CSW, ISEP

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page ii Version 1.0 18 November 2014

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.0 Initial structure 01 Set 2014

0.1 UPD and CSW contributions 22 Oct 2014

0.2 Ready for internal review 23 Oct 2014

0.3 CSW additional contribution 30 Oct 2014

0.4 UPD additional contribution 5 Nov 2014

0.5 Added Requirements table 10 Nov 2014

0.6 ISEP contribution 11 Nov 2014

1.0 Final version 18 Nov 2014

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page iii

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction .. 1

2. Use Case Demonstrators Recap ... 1

2.1 Airbus group ... 1
2.1.1 Overview ... 1
2.1.2 Challenges ... 1

2.2 CSW .. 2
2.2.1 Overview ... 2
2.2.2 Challenges ... 3

3. Development .. 3

3.1 Airbus Group .. 3
3.1.1 Methodology extensions ... 4
3.1.2 Metamodel extensions .. 7
3.1.3 Analysis .. 7
3.1.4 Code generation transformations .. 8

3.2 CSW .. 9
3.2.1 Methodology extensions ... 10
3.2.2 Metamodel extensions .. 11

3.3 Coverage of CONCERTO derived requirements .. 13

4. Conclusion ... 15

5. References .. 16

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page iv Version 1.0 18 November 2014

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

CHESS ML CHESS Modelling Language

PIM Platform Independent Model

PSM Platform Specific Model

WCET Worst Case Execution Time

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the proposed technological solutions for the support of

partitioning on multicore targets for a subset of the CONCERTO use cases. Each of

them poses a number of challenges with respect to the partitioning and multicore

support, notably, how that support requires the extension of the methodology, the

metamodel and the implementation of transformations needed to generate the inputs of

the analysis and for the code generation. This document focuses mostly on the

methodology extensions that provide a broad view of the activities to investigate during

the next months and the metamodel extensions that are a prerequisite for the next

activities.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

This document describes the proposed toolset modifications required to support logical,

physical and virtualized partitioning on multicore targets. Partitioning support is

required for a small subset of the industrial use cases: the Airbus Group use case for the

Avionic domain and the CRITICAL SOFTWARE use case for the Automotive domain.

The CHESS Methodology and Toolset baseline do not support partitions of any kind,

therefore the development of a solution must consider the extension of the

methodology, the metamodel, the implementation of specific analysis and the related

transformations and back-propagation of the analysis results.

The rationale of this deliverable is to first present a brief description of the use case in

section 2 – more details are in D1.2 – and then to propose the solutions and their

challenges in section 3. Due to the crosscutting nature of the deliverables, it is possible

that some of the solutions are already described in other deliverables, in which case,

only the corresponding reference is presented here.

2. USE CASE DEMONSTRATORS RECAP

2.1 AIRBUS GROUP

2.1.1 Overview

This use case requires the conformance to the IMA (Integrated Modular Avionics)

reference architecture [2]. The IMA goal is to achieve isolation by means of the

partitioning of time and space. The time partitioning is achieved by statically designing

a pattern for the activation of different partitions using the concept of Major and Minor

Frames: MAjor Frame (MAF) is usually the least common multiple of the periods of

partitions. MInor Frame (MIF) is usually the highest common factor of the periods of

partitions. Within partitions, tasks are usually interleaved using a fix-priority scheduling

protocol. A two-level scheduler is therefore implied. Communications, either inter or

intra partitions, are performed using common real-time resources like buffer and

mutexes. The space partitioning is achieved by assigning one core (in the case of

multicore) and one memory partition to one IMA partition.

2.1.2 Challenges

The main goals of CONCERTO are:

1. how to model the concept of IMA partitions;

2. how to provide a timing analysis for the two-level scheduler and the related

transformations;

3. how to provide transformations for code generation.

Section 3.1 describes the proposed solutions and their challenges.

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 2 Version 1.0 18 November 2014

Confidentiality: Public Distribution

2.2 CSW

2.2.1 Overview

Mixed criticality systems (MCS) require a strong partition on hardware (HW) resources

in order to maintain a known HW state avoiding unexpected errors or attack vectors to

the system critical software components (SWC).

To ensure this partitioning the system must be modelled and implemented with each

component assigned its criticality depending on the system requirements. This allows an

early detection of resource sharing conflicts and a correct planning on the access each

critical/non-critical component should support, as well as the type of constrains each of

them requires.

Furthermore, at run time, the isolation between software and hardware components of

different criticalities is enforced through a hardware mechanism already described in

annex of D4.3.

Additionally, some events happening during the system execution may require hardware

components (HWC) to change their criticality level due to being required by higher

criticality SWC. This can be interpreted as a change in the execution mode of the

overall system. In the use case context, it consists in the detection of a collision between

the car and an obstacle. Whilst the execution was initially considered as being in a

normal mode of operation, the event triggers changes throughout the system and the

system must be reconfigured. In CONCERTO, this will be supported by the

introduction of modes of operation in the model, thereby allowing the designer to model

distinct criticality classifications and connections in each mode (see D2.4). In each

operation mode, the task properties and constraints, resource allocations and SWC

partitioning may be different.

2.2.1.1 Partitioning support

For HW to SW component assignments, there are four types of connections:

1. Fixed criticality level (FCL): These HW devices do not change their criticality

throughout the execution. They can only be assigned to SWC of the same

criticality level.

2. Upgradable criticality level (UCL): The upgradable devices can have their

criticality increase due to an event (e.g., a shock between the car and an

obstacle) where a higher criticality SWC requires that resource. They are

initially assigned to a lower criticality level and can only be connected to SWC

of that same level. When the overall system mode changes that resource

criticality increases and the assigned SWC changes.

3. Virtual criticality level (VCL): Resources that are required by both critical and

non-critical SWC fall into this category. They are managed by the critical

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 3

Confidentiality: Public Distribution

runtime environment (RTE) but available as a virtual device to the non-critical

RTE through a secure communication layer.

4. Split Criticality level (SCL): These are HWC that have the capability of

isolating their resources and are aware of the SWC criticality level. Split

criticality level components must be composed by two or more sub-components

(one for each level available). For example the system memory can be securely

shared between two distinct criticality RTE with concrete space partitioning.

2.2.2 Challenges

For the purpose of the automotive use case proposed by CSW, CONCERTO should

support the modelling of a mixed-criticality infotainment system with the following

properties:

1. Multi-core with core affinities respecting the restrictions presented in the

previous section;

2. Mixed-Criticality with two (or more) levels of criticality;

3. Distinct system modes of operation for differentiating component attributes and

connections constraints for each mode;

4. Events to switch between modes of operation.

3. DEVELOPMENT

3.1 AIRBUS GROUP

The extensions to CONCERTO to support partitions, as stated in section 2.1, address

three main goals.

Modeling the concept of IMA partitions

Since IMA partitions are functional concerns we envisage that modeling a functional

partition means creating a parent component that embeds other child components. This

idea requires the support for hierarchical components. The concept of functional

partition is also resumed in D2.3.

Following what was stated in D2.2 we propose to develop hierarchical components that

support both top-down and bottom-up development processes. In this context,

supporting functional partitions, along with hierarchical components, requires both the

extension of the methodology and the modelling language. Section 3.1.1 and 3.1.2

describes, respectively, the proposed solutions.

Moreover, as stated in D4.2, supporting IMA partitions can be seen as supporting

programs of different criticality where, however, currently we do not envision an

explicit criticality level associated to a partition.

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 4 Version 1.0 18 November 2014

Confidentiality: Public Distribution

Providing a timing analysis for the two-level scheduler and the related

transformations

MAST [4], the model-based timing analysis tool used in CONCERTO has to be

extended to support the two-level scheduler required for IMA. The extension of MAST

is described in D4.5, section 5, here we focus on what are the impacts for the modeling

language and the transformations. Section 3.1.3 describes the proposed solution.

Providing transformations for code generation

Code generation implies transformations that instantiates predefined containers and

binds them together with connectors according to the system design [1]. The process is

similar to what was achieved in CHESS. Containers are already described in D4.5,

section 6. In this deliverable we focus on the transformations, which are described in

section 3.1.4.

Figure 1 Design steps focused on functional and extra-functional concerns. The definition of the

deployment concerns are not considered in its entirety, i.e. creation of hardware architecture is

necessary for the last step. Left hand side: design steps inherited from CHESS. Right hand side:

design steps extension proposal to support functional partitions.

3.1.1 Methodology extensions

From the methodology standpoint (Figure 1), the user should be able to define partitions

either prior to the components they are going to include (in a top-down fashion) or after

the constituent components are defined (in a bottom-up fashion). The definition of the

components must include the definition of the component types, the component

implementations and the component bindings, so that the component instances can be

generated by the automated procedure of the tool. Once the partitions and the

component instances are generated, the user is able to associate each partition with the

desired group of instances in the functional view. This association is constrained by the

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 5

Confidentiality: Public Distribution

rule that an instance must pertain to one and only one partition. The tool should be able

to ease this process by letting the user define the association in a declarative way and

then providing for the actual creation of the entailed model entities. After the

association is successful, the tool is able to generate the behaviour of the partition by

promoting operations of the component implementations that are not yet bound to other

component implementations.

Figure 2 Proposed design steps for functional partition focused on deployment concern.

The deployment of partitions requires a major extension with respect to CHESS (Figure

2). In fact, while in CHESS the deployment was limited to the definition of the

hardware architecture and to allocation of software instances to hardware components

of the architecture, in CONCERTO the partitions need also to be assigned to a schedule

defining when and for how long they can execute. An automated procedure to generate

partition assignment will be implemented to both ease the burden of manual allocation

of partition to cores and, most importantly, to suggest an allocation that maximizes the

system utilization. With similar goal, an automated procedure to generate the schedule

inside a core will be implemented. In both cases the user can override the tool

suggestions as desired.

To summarize, the extensions to the methodology place the following challenges:

- Generation of partitions instances: this automated procedure will be similar to the

one already implemented which generates component instances.

- Association with functional partitions instances: the way partition instances and

component instances are associated together is similar to the association of software

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 6 Version 1.0 18 November 2014

Confidentiality: Public Distribution

components to hardware components in the deployment view. The challenge in

CONCERTO is the automated generation of such modeling elements based on user

choices by means of a “partition assignment dialog” (Figure 3).

- Generation of partitions ports: this automated procedure should collect all the

component ports that are not bound with other ports and create the corresponding

delegation ports in the partition the components are assigned to. The actual

challenge is the integration of the concept of delegation in the CHESS component

model, that is extending the component model to be hierarchical, rather than the

implementation of the procedure itself.

- Generation of the assignment between partitions and hardware for multicore: in

order to suggest an assignment that maximizes the utilization of the computation

resources a sort of optimization must be implemented. Moreover it is possible that

this procedure depends directly on the scheduling tool described in the follows. A

prerequisite is that the modeling language should support the allocation of software

entities to cores of a multicore processor.

- Generation of partition schedule per core: a scheduling tool must be implemented.

This tool should take as input the user preference for the scheduling position of a

partition and the dependencies among the partitions allocated on the same core.

Figure 3 Partition assignment dialog proposal.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 7

Confidentiality: Public Distribution

3.1.2 Metamodel extensions

From the Metamodel standpoint, the language should be able to represent a functional

partition and to associate component instances and memory partitions to functional

partitions. Here we present only PIM-level extensions since PSM-level ones needs

further investigation, in particular they depends on what the analysis actually expects

and how multicore deployment information is actually modelled. As stated in D2.4

section 5.3.4, the extensions will be provided first for a single-core processor then on a

multicore processor, so it is acceptable that there is an undergoing investigation on how

to represent multicore information at PIM-level and, most importantly, at PSM-level.

A solution for representing PSM-level entities may be come from the CONTREX

project [3] (https://contrex.offis.de/home/index.php/dissemination/deliverables,

deliverable D2.1.1).

Currently there is not a proposal for modelling memory partitions, therefore the

association to memory partitions will not be mentioned in the following.

A partition is represented by a UML Component and a <<FunctionalPartition>>

stereotype. The stereotype should contain extra-functional properties of the partitions

that are explained in section 3.1.3. The partition has to be created in the functional view

while its properties has to be modified in the extra-functional view. The allocation of

component instances to partitions is represented by the MARTE stereotype <<Assign>>

already used in CHESS for assigning software components to hardware components.

Figure 4 The proposed stereotype that represents the functional partitions and its properties.

The challenge to extend the CHESS ML entails the creation of the

<<FunctionalPartition>> stereotype and the inclusion of the corresponding permissions

in the extra-functional view to allow the editing of its properties. The extension needed

for the <<Assign>> stereotype is the inclusion of the corresponding permission in the

functional view, since currently this stereotype is used only in the deployment view.

3.1.3 Analysis

Supporting partitions in MAST entails the modification of the input and the output of

MAST and thus it requires that the CONCERTO modeling language represents the

information needed by the transformations to produce the correct input (analysis phase)

and to store the back-propagated results of the output (back-propagation phase).

For the analysis phase the modeling language shall include for each partition the budget

and the position in the scheduling.

https://contrex.offis.de/home/index.php/dissemination/deliverables

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 8 Version 1.0 18 November 2014

Confidentiality: Public Distribution

The “budget” is mandatory and of user responsibility. It is a measure of the percentage

of the processing resource utilization. This information, along with the WCET of the

tasks of a partition – produced by the assignment of the component instances to the

partitions – and the shared resources – produced from the connectors of the components

-- are fed into the transformation. The latter calculates the values of the MAF and the

actual values for the schedule on each core.

The “scheduling_Table” is the absolute ordering of the partition in the core assigned to

it. It is calculated by the scheduling tool and can be overridden by the user.

For the back-propagation phase the modeling language shall include for each partition

the utilization calculated by the analysis tool as the sum of the utilization of the tasks

inside it. The utilization is therefore a read-only property and has a value only after the

first analysis will be performed.

The challenge to support partition analysis is how to calculate the input of the analysis

starting from the PIM-level information. This is a prerequisite for the actual

implementation of the transformations. Once this is understood, it is possible to define

the PSM-level information and to implement the transformations.

Moreover, the notion of MAF, along with the current industrial practice, is based on

single core. The definition of MAF for multicore is under investigation.

3.1.4 Code generation transformations

The challenge to support code generation for the avionics target is bounded to how to

define PSM-level information needed to the transformation to produce code which

conforms to TiCOS (see D4.5 for details). In particular it is necessary to understand

how to represent multicore deployment information in the PSM prior to implementing

the code generation transformation.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 9

Confidentiality: Public Distribution

3.2 CSW

The main point of interest in CONCERTO is in the validation of a multi-core mixed-

criticality platform at design time, and for that is required to ensure that all components

are correctly defined and assigned on every operational mode.

Resource sharing is a critical step in this design as components criticality classification

and connections interleave between system modes requiring a special attention in their

validation.

As an example, the next figure depicts a system with two HWCs, a GPS and a 3G

connection, and two ASIL classifications, namely ASIL-D for critical components and

QM for non-critical components. In this example, the GPS can be accessed by both

critical and non-critical SWCs through a safe communication channel managed by the

real-time execution environment (see Annex 1 of D4.3 for more details). The 3G

connection on the other hand is exclusively used by non-critical SWCs when the system

is in the normal operational mode. Yet, as soon as a predefined event is detected (a

shock between the car and an obstacle for instance), the system changes its operational

mode from normal to critical, in which case non-critical tasks are killed and both the

GPS and the 3G connection become accessible by ASIL-D SWCs only. That is, the 3G

connection which was initially classified with the criticality QM in the normal

operational mode is reclassified as ASIL-D in the critical operational mode. Hence,

non-critical SWCs, if some should remain active, cannot access the 3G connection

anymore. The main challenge of CONCERTO is to enable the modelling of such mixed

criticality multi-mode systems and enforce the respect of the isolation/partitioning

constraints on shared resources at design time for each and every operational mode.

Figure 5 - HWC reclassification

Follows a more detailed explanation of each steps of the example depicted in Figure 5.

Note that this example depicts the expected runtime behaviour of the eCall system that

should be demonstrated in CSW’s use case:

1. The system initially boots with all HWC managed by the critical RTE;

2. At step 2, the critical RTE configures all devices so that they can be used by

non-critical, critical or both critical and non-critical SWCs as specified by the

model;

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 10 Version 1.0 18 November 2014

Confidentiality: Public Distribution

3. Then, the non-critical execution environment (Android for instance) boots and

starts managing its assigned HWC;

4. At step 4, an event happens that requires all HWC to be transferred under the

control of the critical RTE;

5. All CPUs are reclassified as critical only and the non-critical OS together with

the non-critical tasks are stopped;

6. The critical RTE reconfigures the necessary HWC;

7. Finally, the overall system mode is now in full ASIL-D with no non-critical

SWC executing.

3.2.1 Methodology extensions

From a methodology viewpoint, the major difference with CHESS stands in the fact that

the user should be able to model multiple operational modes as well as the transitions

between those modes. In each mode the components may have different attributes,

connections and assignments.

Furthermore, as a second improvement of the CHESS methodology, due to the mixed

criticality aspect of the targeted application, the tool should enforce isolation between

critical and non-critical components. Contrarily to the avionics use case, which uses the

new functional partition stereotype at the PIM level to enforce both time and space

partitioning at the PSM level, the properties of the execution platform developed by

CSW (see D4.3) allows the application designer to focus exclusively on the space

partitioning aspect at design time. This shall be achieved by defining the criticality

attributes of each component in each operational mode. Then, based on their

criticalities, the tool should automatically generate constraints on the allowed

connections between components (see Section Error! Reference source not found.).

Hence, the tool must only allow connections between components of the same criticality

level. As an example, a critical SWC should never be allowed to access a non-critical

HWC such as the 3G connection in the example of Figure 5. Such a connection would

only be possible if the HWC was reclassified as being critical (as it is the case when the

system switches to the critical operational mode in the previous example). If the user

tried to connect a critical SWC to the 3G connection in the normal operational mode

without changing the criticality level of the 3G, the tool should generate a design error.

As a special case, a component without classification cannot be connected to any other

component and should be deemed as inactive.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 11

Confidentiality: Public Distribution

Figure 6: Design steps extension proposal to support operational modes and space partitioning. The

design steps are focused on functional and extra-functional concerns. The definition of the

deployment concerns are not considered in its entirety, i.e. creation of hardware architecture is

necessary for the last step.

To summarize, the CHESS methodology should be extended with the following steps

(see Figure 6):

 In parallel to the definition of the component types and implementations, one

should define the operational modes of the system together with the possible

transitions between those modes.

 The extra-functional properties of the components can then be defined for each

and every mode.

 Based on the criticality attributes of the components, for each operational mode,

constraints on the possible bindings between SWC and HWC should be

generated by the tool.

 The user can finally bind the SWC with the HWC whilst respecting the

generated constraints in each operational mode.

3.2.2 Metamodel extensions

In order to model CSW’s use case hardware and software components, each HWC must

at first have their type defined, this determines the possible changes to their attributes

between execution modes. Both HW and SW components shall then be included in a

normal mode where each component criticality classification and connection is set

according to the system requirements. A second model shall then represent the system

in a critical state where specific HWC can have their criticality reclassified and their

connections changed.

3.2.2.1 System Operational Mode

The system operational mode can change between at least two modes: normal and

critical. This change will affect UCL and VCL resources and their connections. This

operational mode change will be modelled by a “modeBehaviour” state machine, each

state describing one mode of operation. The mode transitions will be triggered by events

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 12 Version 1.0 18 November 2014

Confidentiality: Public Distribution

happening during the system execution. The support for “operational modes” is further

described in D2.3.

3.2.2.2 Hardware Components Attributes

Each hardware component must have a new set of attributes:

1. ASIL classification;

2. Connection constrains to different ASIL;

3. Connection type as defined in section Error! Reference source not found..

3.2.2.3 Software Components Attributes

Each service provided by a software component must have the following attributes:

1. ASIL classification;

2. One execution time budget, period, deadline and priority per operational mode

supported at system level;

3. Core assignment that may change from one operational mode to the other.

As pictured in Figure 5, an event happening during the system execution can raise the

ASIL classification of some HWCs but also stop the executions of some SWCs. This

corresponds to a mode change (i.e., modification of the state in the modeBehaviour state

machine used to model the transitions between operation mode). The variation of the

attributes content when changing mode should be modelled following the MARTE

specification as further discussed in Section 3.3 of D2.3.

This description of the attributes based on operational modes allows to model any

variation in the system behaviour due to external or internal events changing the

criticality of the system. For instance, following that approach, the modelling of tasks

being killed when passing from the Normal to the Critical operational mode, as

described in Figure 5 for example, could simply be modelled as setting the execution

time budget of the associated SWC to 0.

3.2.2.4 CPU Core Attributes

Each core component must have the following attributes:

1. The ASIL classification for the SWC assigned to it;

2. Upgradable ASIL classification (i.e., one classification per operational mode).

The following restrictions must be enforced:

1. Software components can be assigned only to cores with the same level of

criticality;

2. Cores with no classification do not accept any software component.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 13

Confidentiality: Public Distribution

3.3 COVERAGE OF CONCERTO DERIVED REQUIREMENTS

This section summarizes the current coverage of the CONCERTO derived requirements

concerning the support for the aforementioned use cases.

The column “Comments” is used to trace what is discussed in this document.

Req.
No.

Overall

Priority

Derived Requirement Partners
involved

Comments

R1.1 SHALL CONCERTO language shall support the

definition of modes of operation for software

components. The set of components that

operates under a specific mode of operation

constitutes a scenario.

UPD,INT,

ISEP

See D2.3.

R1.2 SHALL The analysis tools shall be able to compute

the response time based on the user provided

scenarios.

ISEP, UPD See D4.5.

R1.3 SHALL The model transformations shall support

modes of operation.

UPD, INT See D4.5.

R1.4 SHALL The code generation shall generate containers

that are able to switch mode of operation.

UPD See D4.5.

R3.1 SHALL CONCERTO model validation shall

raise precise messages when the model

contains syntactic errors.

UPD Not yet covered.

R3.2 SHALL Model transformations shall issue

precise error messages when a required

property is missing or incorrect

UPD Not yet covered.

R6.1 SHALL The modeling language shall support the

definition of different types of schedulers and

their parameters. In particular there shall be

support for multicore schedulers for SMP and

heterogeneous systems.

INT, ISEP Among the different

types of schedulers

there is also the

scheduler for IMA, i.e

a two-level scheduler.

A solution however is

not yet envisaged (it

may come from the

CONTREX project).

R26.1 SHOULD The modeling language should define

resources like buffers, semaphores and their

non-functional properties (like, size, queuing

policy) and services to manipulate these

resources (intra and inter partition). The

communication mechanisms shall then be

instantiated to the specific domain of interest.

INT,

EADS

Not yet covered. It

should be addressed

when the PSM-level

entities will be defined.

R26.2 SHOULD The modeling language should be able to

represent resources used in Aerospace like

ARINC 653 buffers, semaphores and their

non-functional properties (like size, queuing

policy) and the services to manipulate these

resources.

UPD,

EADS

See the comment for

R26.1

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 14 Version 1.0 18 November 2014

Confidentiality: Public Distribution

R32.1 SHALL The modeling language shall support the

definition of different levels of criticality

INT, UPD,

CSW

Covered in section

3.1.2 (as stated in the

introduction of 3.1) and

3.2.2

R32.2 SHALL The analysis tools shall be able to analyse

mixed-criticality systems

ISEP,

CSW

See Sections 5.2 and

5.5 in D4.5

R32.3 SHALL The runtime environment shall support non-

critical/non-trusted, as well safety-critical

software components

CSW See Annex of D4.3

R32.4 SHALL The runtime environment shall support

mixed-criticality systems under the

assumption that components execute in a pre-

determined hardware resource partition

within the same level of criticality

CSW See Annex of D4.3

R33 SHALL All system components (hardware and

software) shall have their criticality specified

as an attribute.

 Not currently

envisioned for the

Airbus Group use case.

Covered in 3.2.1 for

CSW use case.

R42.1 SHOULD The modeling language should define

communication attributes for software and

hardware components.

INT Not yet covered.

R42.2 SHOULD The CONCERTO design space should

enforce model constraints (i.e. constraint the

user actions) to ensure the correctness of the

model regarding communication concerns

INT Not yet covered.

R69 SHALL CONCERTO shall support means for time

partitioning between critical and non-critical

tasks through CPU budgets

 Covered in section

3.1.2 (extra-functional

properties of the

partition).

R71.1 SHOULD The modeling language should allow to

specify core reservation for software

components.

INT For Airbus Group use

case, section 3.1.1

discusses the partition

assignement automated

procedure that is

indirectly related to the

“assignement process”

emanated from R73 in

D4.1 which is also

related to R71 and R72

and R55 requirements.

For CSW use case,

section 3.2.2 covers

R71 and related

requirements.

R71.2 SHOULD Core reservation should be taken into account

in model transformations

UPD See the comment for

R71.1.

R71.3 SHOULD Core reservation should be taken into account

in the assignment process (R73.3)

MDH,ISE

P

See the comment for

R71.1.

R72.1 SHOULD The modeling language should allow to

specify processor affinity for (critical)

software components.

INT See the comment for

R71.1.

 D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

18 November 2014 Version 1.0 Page 15

Confidentiality: Public Distribution

R72.2 SHOULD Processor affinity should be taken into

account in model transformations

INT See the comment for

R71.1

R72.3 SHOULD Processor affinity should be taken into

account in the assignment process (R73.3)

UPD, ISEP See the comment for

R71.1

R73.1 SHALL The CONCERTO deployment view shall

allow the user to define several execution

nodes, containing single core or multicore

processors, and to define the allocation of the

software components to the execution

resources on these nodes. There shall be no

specific limitation when the user deploys the

components, either on a single node or on

several nodes.

INT,

MDH,

CSW,

UPD

See the comment for

R71.1

R73.2

(R55)

SHALL The CONCERTO design space shall assist

the user to handle multicore deployment by

enabling specific model constraints for

hardware components

INT, CSW See the comment for

R71.1.

4. CONCLUSION

This document presents the proposed extensions to the CONCERTO Methodology and

Toolset to cover the CONCERTO requirements for Airbus Group use case for the

Avionic domain and the CRITICAL SOFTWARE use case for the Automotive domain.

Regarding the Airbus Group use case, the solution proposed for extending the

methodology and modelling IMA partitions are in a rather advanced status. Conversely,

the solutions for the transformations from/to the analysis and the code generation need

more investigation. There is currently an ongoing study on how to define PSM-level

entities to represent multicore deployment and to represent the input and the output of

the analysis. This study is a prerequisite to the implementation of the transformations.

Regarding the CRITICAL SOFTWARE use case the solution proposed for mixed-

criticality infotainment systems relies essentially on two main aspects: (1) the

enforcement of connection constraints between SWC and HWC based on their

respective criticality levels and (2) the modelling of modes of operation. As discussed in

D2.3, the modelling of operational modes and the transitions between those should be

implemented following the MARTE specification. The development of the runtime

environment and execution platform is well underway as already presented in D4.3.

D4.6 – Modelling, analysis and transformation solutions - Toolset Initial Version

Page 16 Version 1.0 18 November 2014

Confidentiality: Public Distribution

5. REFERENCES

[1] M. Panunzio and T. Vardanega, “Charting the Evolution of the Ada Ravenscar Code

Archetypes”, in ACM SIGAda Ada Letters, 2013.

[2] R.T.C. for Aeronautics, “Integrated Modular Avionics (IMA) development guidance

and certification considerations”, 2005.

[3] https://contrex.offis.de/home/, CONTREX project homepage

[4] http://mast.unican.es/, 2014. MAST homepage.

https://contrex.offis.de/home/
http://mast.unican.es/

