PRECLINICAL ANTITUMOR ACTIVITY AND MECHANISMS OF ACTION OF APRICOXIB, A CLINICAL COX-2 INHIBITOR

Amanda Krane1, Jason E. Toombs1, Katherine Ostapoff1, Kathryn R. Mathew2, Sara Zaknoen2, Francis J. Burnett2 and Ralf A. Brinkman1. 1Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Thoracic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX; 2Charles River Laboratories, Monteville, N.J.; 3Tregesa Pharmaceuticals, Inc, San Diego, CA.

ABSTRACT

Apricoxib is a clinical COX-2 inhibitor. Previous studies have shown that it is a highly selective and potent inhibitor of COX-2 with nanomolar IC50 values. In preclinical models, apricoxib preferentially inhibits COX-2 and has demonstrated single-agent activity in a variety of tumor types.

MATERIALS AND METHODS

- **In vitro** assays: COX-2 activity and expression
- **In vivo** assays: tumor growth delay, tumor cell cytotoxicity

RESULTS

In vitro assays showed that apricoxib had a strong inhibitory effect on COX-2 activity and expression in a variety of cell lines, including colon, breast, and prostate cancer cell lines. In addition, apricoxib inhibited COX-2-mediated prostaglandin E2 (PGE2) production in these cells.

In vivo assays demonstrated that apricoxib significantly retarded tumor growth in various preclinical models, including breast, colon, and prostate cancer models. The drug was well tolerated, and no significant toxicity was observed.

DISCUSSION

Apricoxib is a highly selective and potent COX-2 inhibitor that demonstrates single-agent activity in preclinical models. Further studies are needed to evaluate its potential as a clinical anticancer agent.

CONCLUSIONS

- Apricoxib shows promise as a single-agent therapy in preclinical models.
- Further studies are needed to evaluate its therapeutic potential in clinical trials.

REFERENCES

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (CA155452) and the American Cancer Society (RSG-16-076-01-CPPB).

- **Figures and tables** are not included in this abstract.

Keywords: Apricoxib, COX-2, Preclinical Models, Antitumor Activity.