
Compositional Invariant Generation for
Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

UJF-Grenoble, CNRS VERIMAG UMR 5104, Grenoble F-38041, France ??

Abstract. In this paper we address the state space explosion problem
inherent to model-checking timed systems with a large number of compo-
nents. The main challenge is to obtain pertinent global timing constraints
from the timings in the components alone. To this end, we make use of
auxiliary clocks to automatically generate new invariants which capture
the constraints induced by the synchronisations between components.
The method has been implemented as an extension of the D-Finder tool
and successfully experimented on several benchmarks.

1 Introduction

Compositional methods in verification have been developed to cope with state
space explosion. Generally based on divide et impera principles, these methods
attempt to break monolithic verification problems into smaller sub-problems by
exploiting either the structure of the system or the property or both. Composi-
tional reasoning can be used in different manners e.g., for deductive verification,
assume-guarantee, contract-based verification, compositional generation, etc.

The development of compositional verification for timed systems remains
however challenging. State-of-the-art tools [7, 13, 25, 18] for the verification of
such systems are mostly based on symbolic state space exploration, using ef-
ficient data structures and particularly involved exploration techniques. In the
timed context, the use of compositional reasoning is inherently difficult due to
the synchronous model of time. Time progress is an action that synchronises
continuously all the components of the system. Getting rid of the time synchro-
nisation is necessary for analysing independently different parts of the system
(or of the property) but becomes problematic when attempting to re-compose
the partial verification results. Nonetheless, compositional verification is actively
investigated and several approaches have been recently developed and employed
in timed interfaces [2] and contract-based assume-guarantee reasoning [15, 22].

In this paper, we propose a different approach for exploiting compositionality
for analysis of timed systems using invariants. In contrast to exact reachability
analysis, invariants are symbolic approximations of the set of reachable states of
the system. We show that rather precise invariants can be computed composi-
tionally, from the separate analysis of the components in the system and from

?? Work partially supported by the European Integrated Projects 257414 ASCENS,
288175 CERTAINTY, and STREP 318772 D-MILS.

their composition glue. This method is proved to be sound for the verification
of safety properties. However, it is not complete.

The starting point is the verification method of [9], summarised in Figure 1.
The method exploits compositionality as explained next. Consider a system con-
sisting of components Bi interacting by means of a set γ of multi-party inter-
actions, and let Ψ be a system property of interest. Assume that all Bi as well
as the composition through γ can be independently characterised by means
of component invariants CI (Bi), respectively interaction invariants II (γ). The
connection between the invariants and the system property Ψ can be intuitively
understood as follows: if Ψ can be proved to be a logical consequence of the con-
junction of components and interaction invariants, then Ψ holds for the system.

`
∧
i

CI (Bi) ∧ II (γ)→ Ψ

‖γBi |= � Ψ
(VR)

Fig. 1: Compositional Verification

In the rule (VR) the symbol “ ` ” is
used to underline that the logical impli-
cation can be effectively proved (for in-
stance with an SMT solver) and the nota-
tion “B |= � Ψ” is to be read as “Ψ holds
in every reachable state of B”.

The verification rule (VR) in [9] has been developed for untimed systems. Its
direct application to timed systems may be weak as interaction invariants do not
capture global timings of interactions between components. The key contribution
of this paper is to improve the invariant generation method so to better track
such global timings by means of auxiliary history clocks for actions and inter-
actions. At component level, history clocks expose the local timing constraints
relevant to the interactions of the participating components. At composition
level, extra constraints on history clocks are enforced due to the simultaneity of
interactions and to the synchrony of time progress.

As an illustration, let us consider as running example the timed system in
Figure 2 which depicts a “controller” component serving n “worker” components,
one at a time. The interactions between the controller and the workers are defined
by the set of synchronisations {(a | bi), (c | di) | i ≤ n}. Periodically, after every
4 units of time, the controller synchronises its action a with the action bi of any

lc0

lc1x ≤ 4

lc2

x ≥ 4n
x := 0

a, x = 4
x:=0

c
x := 0

a

c

Controller

l11

l12

b1
y1 ≥ 4n

d1
y1 := 0

b1

d1

Worker1l21

l22

b2
y2 ≥ 4n

d2
y2 := 0

b2

d2

Worker2

l31

l32

b3
y3 ≥ 4n

d3
y3 := 0

b3

d3

Worker3

Fig. 2: A Timed System

worker i whose clock shows at least
4n units of time. Initially, such a
worker exists because the controller
waits for 4n units of time before in-
teracting with workers. The cycle re-
peats forever because there is always
a worker “willing” to do b, that is,
the system is deadlock-free. Proving
deadlock-freedom of the system re-
quires to establish that when the con-
troller is at location lc1 there is at least

one worker such that yi − x ≥ 4n − 4. Unfortunately, this property cannot be
shown if we use (VR) as it is in [9]. Intuitively, this is because the proposed
invariants are too weak to infer such cross constraints relating the clocks of the

2

controller and the clocks of the workers: interaction invariants II (γ) relates only
locations of components and thus at most eliminates unreachable configurations
like (lc1, . . . , l

i
2, . . .), while the component invariants can only state local condi-

tions on clocks such as that x ≤ 4 at lc1. Using history clocks allows to recover
additional constraints. For example, after the first execution of the loop, each
time when the controller is at location lc1, there exists a worker i whose clock
has an equal value as that of the controller. Similarly, history clocks allow to
infer that different (a | bi) interactions are separated by at least 4 time units.
These constraints altogether are then sufficient to prove the deadlock freedom
property.

Related Work. Automatic generation of invariants for concurrent systems is a
long-time studied topic. Yet, to our knowledge, specific extensions or applications
for timed systems are rather limited. As an exception, the papers [5, 17] propose
a monolithic, non-compositional method for finding invariants in the case of
systems represented as a single timed automaton.

Compositional verification for timed systems has been mainly considered in
the context of timed interface theories [2] and contract-based assume guarantee
reasoning [15, 22]. These methods usually rely upon choosing a “good” decom-
position structure and require individual abstractions for components to be de-
terministic timed I/O automata. Finding the abstractions is in general difficult,
however, their construction can be automated by using learning techniques [22] in
some cases. In contrast to the above, we are proposing a fully automated method
generating, in a compositional manner, an invariant approximating the reachable
states of a timed system. Abstractions serve also for compositional minimisation,
for instance [10] minimises by constructing timed automata quotients with re-
spect to simulation; these quotients are in turn composed for model-checking.
Our approach is orthogonal in that we do not compose at all. Compositional de-
ductive verification as in [16] is also orthogonal on our work in that, by choosing
a particular class of local invariants to work with, we need not focus on elaborate
proof systems but reason at a level closer to intuition.

The use of additional clocks has been considered, for instance, in [8]. There,
extra reference clocks are added to components to faithfully implement a partial
order reduction strategy for symbolic state space exploration. Time is allowed
to progress desynchronised for individual components and re-synchronised only
when needed, i.e., for direct interaction within components. Clearly, the history
clocks in our work behave in a similar way, however, our use of clocks is as a
helper construction in the generation of invariants and we are totally avoiding
state space exploration. Finally, another successful application of extra clocks
has been provided in [23] for timing analysis of asynchronous circuits. There,
specific history clocks are reset on input signals and used to provide a new time
basis for the construction of an abstract model of output signals of the circuit.

Organisation of the paper. Section 2 recalls the needed definitions for modelling
timed systems and their properties. Section 3 presents our method for composi-
tional generation of invariants. Section 4 describes the prototype implementing
the method and some case studies we experimented with. Section 5 concludes.

3

2 Timed Systems and Properties

In the framework of the present paper, components are timed automata and
systems are compositions of timed automata with respect to multi-party inter-
actions. The timed automata we use are essentially the ones from [3], however,
sligthly adapted to embrace a uniform notation throughout the paper.

Definition 1 (Syntax of a Component). A component is a timed automaton
(L, l0, A, T,X , tpc) where L is a finite set of locations, l0 is an initial location,
A a finite set of actions, T ⊆ L× (A×C × 2X)×L is a set of edges labeled with
an action, a guard, and a set of clocks to be reset, X is a finite set of clocks1,
and tpc : L→ C assigns a time progress condition2 to each location. C is the set
of clock constraints. A clock constraint is defined by the grammar:

C ::= true | false | x#ct | x− y#ct | C ∧ C

with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time progress conditions are
restricted to conjunctions of constraints as x ≤ ct.

Before recalling the semantics of a component, we first fix some notation. Let
V be the set of all clock valuation functions v : X → R≥0. For a clock constraint
C, C(v) denotes the evaluation of C in v. The notation v + δ represents a new
v′ defined as v′(x) = v(x) + δ while v[r] represents a new v′ which assigns any
x in r to 0 and otherwise preserves the values from v.

Definition 2 (Semantics of a Component). The semantics of a component
B = (L, l0, A, T,X, tpc) is given by the labelled transition system (Q,A,→) where
Q ⊆ L ×V denotes the states of B and → ⊆ Q × (A ∪ R≥0) × Q denotes the
transitions according to the rules:

– (l,v)
δ→ (l,v + δ) if

(
∀δ′ ∈ [0, δ]

)
.(tpc(l)(v + δ′)) (time progress);

– (l,v)
a→ (l′,v[r]) if

(
l, (a, g, r), l′

)
∈ T , g(v) ∧ tpc(l′)(v[r]) (action step).

Because the semantics defined above is in general infinite, we work with the
so called zone graph [19] as a finite symbolic representation. The symbolic states
in a zone graph are pairs (l, ζ) where l is a location of B and ζ is a zone, a set
of clock valuations defined by clock constraints. Given a symbolic state (l, ζ),
its successor with respect to a transition t of B is denoted as succ(t, (l, ζ)) and
defined by means of its timed and its discrete successor:

– time-succ((l, ζ)) = (l,↗ ζ ∩ tpc(l))
– disc-succ(t, (l, ζ)) = (l′, (ζ ∩ g)[r] ∩ tpc(l′)) if t =

(
l, (, g, r), l′

)
– succ(t, (l, ζ)) = norm(time-succ(disc-succ(t, (l, ζ))))

1 Clocks are local. This is essential for avoiding side effects which would break com-
positionality and local analysis.

2 To avoid confusion with invariant properties, we prefer to adopt the terminology of
“time progress condition” from [11] instead of “location invariants”.

4

where ↗, [r], norm are usual operations on zones: ↗ ζ is the forward diagonal
projection of ζ, i.e., it contains any valuation v′ for which there exists a real δ
such that v′ − δ is in ζ; ζ[r] is the set of all valuations in ζ after applying the
resets in r; norm(ζ) corresponds to normalising ζ such that computation of the
set of all successors terminates. Since we are seeking component invariants which
are over-approximations of the reachable states, a more thorough discussion on
normalisation is not relevant for the present paper. The interested reader may
refer to [12] for more precise definitions.

A symbolic execution of a component starting from a symbolic state s0 is a
sequence of symbolic states s0, s1, . . . , sn, . . . such that for any i > 0 there exists
a transition t for which si is succ(t, si−1).

Given a component B with initial symbolic state s0 and transitions T , the
set of reachable symbolic states Reach(B) is Reach(s0) where Reach is defined
recursively for an arbitrary s as:

Reach(s) = {s} ∪
⋃
t∈T

Reach(succ(t, s)).

In our framework, components communicate by means of interactions, which
are synchronisations between their actions. Given n components Bi, 1 ≤ i ≤ n,
with disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪iAi
containing at most one action per component, that is, of the form α = {ai}i∈I ,
with ai ∈ Ai for all i ∈ I ⊆ {1, . . . , n}. Given a set of interactions γ ⊆ 2∪iAi ,
we denote by Act(γ) the set of actions involved in γ, that is, Act(γ) = ∪α∈γα.
A timed system is the composition of components Bi for a set of interactions γ
such that Act(γ) = ∪iAi.

Definition 3 (Timed System). For n components Bi = (Li, l
i
0, Ai, Ti,Xi, tpci)

with Ai ∩ Aj = ∅, Xi ∩ Xj = ∅, for any i 6= j, the composition ‖γBi w.r.t. a
set of interactions γ is defined by a timed automaton (L, l̄0, γ, Tγ ,X , tpc) where
l̄0 = (l10, . . . , l

n
0), X = ∪iXi, L = ×iLi, tpc(l̄) = ∧itpc(li), and Tγ is such that

for any interaction α = {ai}i∈I we have that l̄
α,g,r−−−→ l̄′ where l̄ = (l1, . . . , ln),

g = ∧i∈Igi, r = ∪i∈Iri, and l̄′(i) = if (i 6∈ I) li else l′i for li
ai,gi,ri−−−−−→ l′i.

In the timed system ‖γBi a component Bi can execute an action ai only as
part of an interaction α, ai ∈ α, that is, along with the execution of all other
actions aj ∈ α, which corresponds to the usual notion of multi-party interaction.
Notice that interactions can only restrict the behavior of components, i.e. the
states reached by Bi in ‖γBi belong to Reach(Bi). This property is exploited by
the verification rule (VR) presented throughout this paper.

To give a logical characterisation of components and interactions we use
invariants. An invariant Φ is a state property which holds in every reachable state
of a component (or of a system) B , in symbols, B |= �Φ. We use CI (Bi) and
II (γ), to denote component, respectively interaction invariants. For component
invariants, our choice is to work with their reachable set. More precisely, for
a component B with initial state s0, CI (B) is the disjunction of (l ∧ ζ) and
where, to ease the reading, we abuse notation and use l as a place holder for a

5

state predicate “at(l)” which holds in any symbolic state with location l, that is,
the semantics of at(l) is given by (l, ζ) |= at(l). As an example, the component
invariants for the scenario in Figure 2 with one worker are:

CI (Controller) = (lc0 ∧ x ≥ 0) ∨ (lc1 ∧ x ≤ 4) ∨ (lc2 ∧ x ≥ 0)

CI (Worker i) = (li1 ∧ yi ≥ 0) ∨ (li2 ∧ yi ≥ 4).

Interaction invariants are over-approximations of global state spaces allowing
us to disregard certain tuples of local states as unreachable. Interaction invariants
relate locations of different atomic components. They are either boolean e.g., l1∨
l2∨l3 or linear e.g., l1+l2+l3 = 1. These particular examples ensure that at least
(resp. exactly) one of the locations l1, l2, l3 are active at any time. Interaction
invariants are computed on the synchronization skeleton of the composition, that
is, a 1-safe Petri net obtained by composing component behaviours according
to the interaction glue. The methods rely on boolean ([9]) / algebraic ([21])
constraint solving and avoid any form of state-space exploration. In the case of
the running example, when the controller is interacting with one worker, the
interaction invariant II

(
{(a | b1), (c | d1)}

)
is (lc2 ∨ l11) ∧ (l12 ∨ lc0 ∨ lc1).

The proposed invariants3 have the feature that they are inductive. We recall
that an invariant Φ is inductive if it holds initially and if for a state s s.t. s |= Φ
we have that s′ |= Φ for any successor s′ of s. Moreover, inductive invariants
have the property that their conjunction is also an inductive invariant.

3 Timed Invariant Generation

As explained in the introduction, a direct application of (VR) may not be useful
in itself in the sense that the component and the interaction invariants alone are
usually not enough to prove global properties, especially when the properties
involve relations between clocks in different components. More precisely, though
component invariants encode timings of local clocks, there is no direct way – the
interaction invariant is orthogonal on timing aspects – to constrain the bounds
on the differences between clocks in different components. To give a concrete
illustration, consider the safety property ΨSafe = (lc1 ∧ l11 → x ≤ y1) that holds
in the running example with one worker. It is not difficult to see that ΨSafe

cannot be deduced from CI (Controller)∧CI (Worker1)∧ II
(
{(a | b1), (c | d1)}

)
.

3.1 History Clocks for Actions

In this section we show how we can, by means of some auxiliary constructions,
apply (VR) more successfully. To this end, we “equip” components (and later,
interactions) with history clocks, a clock per action; then, at interaction time,
the clocks corresponding to the actions participating in the interaction are reset.

3 The rule (VR) is generic enough to work with other types of invariants. For example,
one could use over-approximations of the reachable set in the case of component
invariants, however, this comes at the price of losing precision.

6

This basic transformation allows us to automatically compute a new invariant of
the system with history clocks. This new invariant, together with the component
and interaction invariants, is shown to be, after projection of history clocks, an
invariant of the initial system.

Definition 4 (Components with History Clocks). Given a component model
B = (L, l0, A, T,X , tpc), its extension wrt history clocks is a timed automaton
Bh = (L, l0, A, T

h,X ∪HA, tpc) where:

– HA = {ha | a ∈ A} ∪ {h0} is the set of history clocks associated to actions
and ho, a history clock dedicated to initialisation. Together with the clocks
in X , h0 is initialised to zero. All other clocks in HA may be initialised to
any arbitrary positive value.

– Th =
{(
l, (a, g, r ∪ [ha := 0]), l′

)
|
(
l, (a, g, r), l′

)
∈ T

}
.

Since there is no timing constraint involving history clocks, these have no
influence on the behaviour. The extended model is, in fact, bisimilar to the
original model. Moreover, any invariant of the composition of Bh

i corresponds
to an invariant of ‖γBi. For the ease of reading, we abuse notation and use ∃HA
to stand for ∃h0∃ha1∃ha2 . . . ∃han for A = {a1, a2, . . . , an}.

Proposition 1 Any symbolic execution in Bh corresponds to a symbolic exe-
cution (where all constraints on history clocks are ignored) in B. Moreover, if
‖γBh

i |= �Φ then ‖γBi |= �(∃HA).Φ.

The only operation acting on history clocks is reset. Its effect is that immedi-
ately after an interaction takes place, all history clocks involved in the interaction
are equal to zero. All other history clocks preserve their previous values, thus
they are at least greater in value than all those being reset. This basic but useful
observation is exploited in the following definition, which builds, recursively, all
the inequalities that could hold given an interaction set γ.

Definition 5 (Interaction Inequalities for History Clocks). Given an in-
teraction set γ, we define the following interaction inequalities E(γ):

E(γ) =
∨
α∈γ

((∧
ai,aj∈α
ak /∈α

hai = haj ≤ hak
)
∧ E(γ 	 α)

)
.

where γ 	 α = {β \ α | β ∈ γ ∧ β 6⊆ α}.

Remark 1. We can use the interpreted function “min” as syntactic sugar to have
a more compact expression for E(γ):

E(γ) =
∨
α∈γ

(∧
ai,aj∈α

hai = haj ≤ min
ak 6∈α

hak ∧ E(γ 	 α)
)
.

Example 1. For γ = {(a | b1), (c | d1)}, corresponding to the interactions be-
tween the controller and one worker in Figure 2, the compact form of E(γ) is:(
ha = hb1 ≤ min(hc, hd1) ∧ hc = hd1

)
∨
(
hc = hd1 ≤ min(ha, hb1) ∧ ha = hb1

)
.

7

E(γ) characterises the relations between history clocks during any possible
execution of a system. It can be shown, by induction, that this characterisation
is, in fact, an inductive invariant of the extended system.

Proposition 2 E(γ) is an inductive invariant of ‖γBh
i .

By Proposition 2, and using the fact that component and interaction invari-
ants are inductive, we have that also their conjunction is an inductive invariant
of the system with history clocks. As a consequence of Proposition 1, we can
eliminate the history clocks from ∧iCI (Bh

i)∧ II (γ)∧E(γ) and obtain an invari-
ant of the original system. This invariant is usually stronger than CI (Bi)∧ II (γ)
and yields more successful applications of the rule (VR).

Example 2. We reconsider the sub-system of a controller and a worker from
Figure 2. We illustrate how the safety property ψSafe introduced in the beginning
of the section can be shown to hold by using the newly generated invariant. The
invariants for the components with history clocks are:

CI (Controllerh) = (lc0 ∧ h0 = x) ∨
(lc1 ∧ x ≤ 4 ∧ ha ≤ h0 ∧ (ha = hc ≥ 4 + x ∨ x = hc ≤ ha)) ∨
(lc2 ∧ x = ha ∧ hc ≤ h0 ∧ (hc ≥ ha + 8 ∨ hc = ha + 4))

CI (Workerh1) = (l11 ∧ (y1 = h0 ∨ y1 = hd1 ≤ hb1 ≤ h0)) ∨
(l12 ∧ h0 ≥ y1 = hd1 ≥ 4 + hb1)

By using the interaction invariant described in Section 2 and the equality con-
straints E(γ) from Example 1, after the elimination of the existential quantifiers
in
(
∃h0.∃ha.∃hb1 .∃hc.∃hd1

)(
CI (Controllerh) ∧CI (Workerh1) ∧ II (γ) ∧ E(γ)

)
we

obtain the following invariant Φ :

Φ = (l11 ∧ lc0 ∧ (y1 ≤ x)) ∨
(
l11 ∧ lc1 ∧ (y1 = x ∨ y1 ≥ x + 4)

)
∨(

l12 ∧ lc2 ∧ (y1 = x + 4 ∨ y1 ≥ x + 8)
)
.

It can be easily checked that Φ∧¬ΨSafe has no satisfying model and this proves
that ΨSafe holds for the system. We used bold fonts in Φ to highlight relations
between x and y1 which are not in CI (Controller) ∧ CI (Worker1) ∧ II (γ).

To sum up, the basic steps described so far are: (1) extend the input com-
ponents Bi to components with history clocks Bh

i ; (2) compute component in-
variants CI (Bh

i) and (3) equality constraints E(γ) from the interactions γ; (4)
finally, eliminate the history clocks in ∧iCI (Bh

i) ∧ E(γ) ∧ II (γ), and obtain a
stronger invariant by means of which the application of (VR) is more successful.

We conclude the section with a remark on the size of E(γ). Due to the com-
bination of recursion and disjunction, E(γ) can be large. Much more compact
formulae can be obtained by exploiting non-conflicting interactions, i.e., inter-
actions that do not share actions.

Proposition 3 For γ = γ1∪γ2 with Act(γ1)∩Act(γ2) = ∅, E(γ) ≡ E(γ1)∧E(γ2).

8

Corollary 4 If the interaction model γ has only disjoint interactions, i.e., for

any α1, α2 ∈ γ, α1 ∩ α2 = ∅, then E(γ) ≡
∧
α∈γ

(∧
ai,aj∈α

hai = haj

)
.

Example 3. The interaction set γ in Example 1 is not conflicting. Thus, by apply-
ing Corollary 4, we can simplify the expression of E(γ) to (ha = hb1)∧(hc = hd1).

3.2 History Clocks for Interactions

The equality constraints on history clocks allow to relate the local constraints
obtained individually on components. In the case of non-conflicting interactions,
the relation is rather “tight”, that is, expressed as conjunction of equalities on
history clocks. In contrast, the presence of conflicts lead to a significantly weaker
form. Intuitively, every action in conflict can be potentially used in different
interactions. The uncertainty on its exact use leads to a disjunctive expression
as well as to more restricted equalities and inequalities amongst history clocks.

Nonetheless, the presence of conflicts themselves can be additionally ex-
ploited for the generation of new invariants. That is, in contrast to equality
constraints obtained from interaction, the presence of conflicting actions enforce
disequalities (or separation) constraints between all interactions using them. In
what follows, we show a generic way to automatically compute such invariants
enforcing differences between the timings of the interactions themselves. To effec-
tively implement this, we proceed in a similar manner as in the previous section:
we again make use of history clocks and corresponding resets but this time we
associate them to interactions, at the system level.

Definition 6 (Systems with Interaction History Clocks). Given a system
‖γBi, its extension wrt history clocks for interactions is ‖γhBh

i , Γ
∗ where:

– Γ ∗ is an auxiliary TA having one location l with no invariant, and for each
interaction α in γ a clock hα, i.e., Γ ∗ = ({l∗}, Aγ , T,Hγ , ∅) where:
• the set of actions Aγ = {aα | α ∈ γ}
• the set of clocks Hγ = {hα | α ∈ γ}
• T = {(l∗, aα, true, hα := 0, l∗) | α ∈ γ}

– γh = {(aα | α) | α ∈ γ} with (aα | α) denoting {aα} ∪ {a | a ∈ α}.

Using a similar argument as for Proposition 1, it can be shown that any
invariant of ‖γhBh

i , Γ
∗ corresponds to an invariant of ‖γBi by first showing that

any execution of ‖γhBh
i , Γ

∗ corresponds to an execution of ‖γBi.

Proposition 5 Any execution in ‖γhBh
i , Γ

∗ corresponds to an execution in ‖γBi.
Moreover, if ‖γhBh

i , Γ
∗ |= � Φ then ‖γBi |= � ∃Hγ∃HA.Φ where the new nota-

tion ∃Hγ stands for ∃hα1∃hα2 . . . ∃hαn when γ = {α1, α2, . . . , αn}.

We use history clocks for interactions to express additional constraints on
their timing. The starting point is the observation that when two conflicting
interactions compete for the same action a, no matter which one is first, the
other one must wait until the component which owns a is again able to execute
a. This is referred to as a “separation constraint” for conflicting interactions.

9

Definition 7 (Separation Constraints for Interaction Clocks). Given an
interaction set γ, the induced separation constraints, S(γ), are defined as follows:

S(γ) =
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

| hα − hβ |≥ ka

where | | stands for absolute values and ka denotes the minimum between the
first occurrence time of a and the minimal time elapse between two consecutive
occurrences of a. It is computed4 locally on the component executing a.

Example 4. In our running example the only shared actions are a and c within
the controller, and both ka and kc are equal to 4, thus the expression of the
separation constraints reduces to:

S(γ) ≡
∧
i 6=j

|hc|di − hc|dj | ≥ 4 ∧
∧
i6=j

|ha|bi − ha|bj | ≥ 4.

Proposition 6 S(γ) is an inductive invariant of ‖γhBh
i , Γ

∗.

Proof. By induction on the length of computations. For the base case, we assume
that the initial values of the history clocks for interactions in Γ ∗ are such that
they satisfy S(γ). Obviously, such a satisfying initial model always exists: it
suffices to take all hα with a minimal distance between them greater than the
maximum ka, in an arbitrary order.

For the inductive step, let s be the state reached after i steps, s′ a successor,
α an interaction such that s

α→ s′, a an arbitrary action and β ∈ γ such that
a ∈ β. For any β′ 6= α, | hβ − hβ′ |≥ ka is unchanged from s to s′ (α is the only
interaction for which hα is reset from s to s′) and thus holds by induction. We
now turn to | hβ − hα | which at s′ evaluates to hβ . Let sa be the most recent
state reached by an interaction containing a. If no such interaction exists, that
is, if a has no appearance in the i steps to s, let sa be the initial state. On the
path from sa to s′, hβ could not have been reset (otherwise, sa would not be the
most recent one). Thus hβ ≥ ka by the definition of ka. ut

The invariant S(γ) is defined over the history clocks for interactions. Previ-
ously, the invariant E(γ) has been expressed using history clocks for actions. In
order to “glue” them together in a meaningful way, we need some connection
between history and interaction clocks. This connection is formally addressed by
the constraints E∗ defined below.

Definition 8 (E∗). Given an interaction set γ, we define E∗(γ) as follows:

E∗(γ) =
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

4 For instance, by reduction to a shortest path problem in weighted graphs [14].

10

By a similar argument as the one in Proposition 2, it can be shown that
E∗(γ) is an inductive invariant of the extended system. The connection between
E and E∗ is given in Proposition 7.

Proposition 7 E∗(γ) is an inductive invariant of ‖γhBh
i , Γ

∗. Moreover, the
equivalence ∃Hγ .E∗(γ) ≡ E(γ) is a valid formula.

Proof. To see that E∗(γ) is an invariant it suffices to note that, for any action
a, there is always an interaction α containing a such that ha and hα are both
reset in the same time.

The connection between E and E∗ is shown by induction on the number of
interactions in γ. We only present the base case, γ = {α}, (the inductive one as
well as all proofs can be found in [4]):

E(γ) =
∧

ai,aj∈α
hai = haj ≡ ∃hα.

(∧
ai∈α

hai = hα
)
≡

∃Hγ .
(∧
ai∈Act(γ)

hai = min
α∈γ,ai∈α

hα
)
≡ ∃Hγ .E∗(γ).

ut
From Proposition 7, together with Propositions 5 and 6, it follows that

∃HA∃Hγ .(∧iCI (Bh
i)∧ II (γ)∧E∗(γ)∧S(γ)) is an invariant of ‖γBi. This new in-

variant is in general stronger than ∧iCI (Bh
i)∧II (γ)∧E(γ) and it provides better

state space approximations for timed systems with conflicting interactions.

Example 5. To get some intuition about the invariant generated using separation
constraints, let us reconsider the running example with two workers. The subfor-
mula which we emphasise here is the conjunction of E∗ and S. The interaction
inequalities for history clocks are:

E∗(γ) ≡ hb1 = ha|b1 ∧ hb2 = ha|b2 ∧ ha = min
i=1,2

(ha|bi)∧

hd1 = hc|d1 ∧ hd2 = hc|d2 ∧ hc = min
i=1,2

(hc|di)

by recalling the expression of S(γ) from Example 4 we obtain that:

∃Hγ .E∗ (γ) ∧ S(γ) ≡ |hb2 − hb1 | ≥ 4 ∧ |hd2 − hd1 | ≥ 4

and thus, after quantifier elimination in ∃HA∃Hγ .(CI (Controllerh)∧iCI (Workerhi)∧
II (γ) ∧ E∗(γ) ∧ S(γ)), we obtain the following invariant Φ:

Φ =
(
l11 ∧ l21 ∧ lc0 ∧ x = y1 = y2

)
∨(

l11 ∧ l21 ∧ lc1 ∧ x ≤ 4 ∧ ((y1 = x ∧ y2 − y1 ≥ 4 ∨ y1 ≥ x+ 8∨
y2 = x ∧ y1 − y2 ≥ 4 ∨ y2 ≥ x+ 8))

)
∨(

l12 ∧ l21 ∧ lc2 ∧ (y1 ≥ x+ 8 ∨ (y2 = x+ 4 ∧ y1 − y2 ≥ 4))
)
∨(

l21 ∧ l12 ∧ lc2 ∧ (y2 ≥ x+ 8 ∨ (y1 = x+ 4 ∧ y2 − y1 ≥ 4))
)

We emphasised in the expression of Φ the newly discovered constraints. All in
all, Φ is strong enough to prove that the system is deadlock free.

11

4 Implementation and Experiments

The method has been implemented in a Scala (scala-lang.org/) prototype
(www-verimag.imag.fr/~lastefan/tas) which is currently being integrated
with the D-Finder tool [9] for verification of Real-Time BIP systems [1]. The
prototype takes as input components Bi, an interaction set γ and a global safety
property Ψ and checks whether the system satisfies Ψ . Internally, it uses PPL
(bugseng.com/products/ppl) to manipulate zones (essentially polyhedra) and
to compute component invariants. It generates Z3 (z3.codeplex.com) Python
code to check the satisfiability of the formula ∧iCI (Bi)∧ II (γ)∧Φ∗ ∧¬Ψ where
Φ∗, depending on whether γ is conflicting, stands for E(γ) or E∗(γ) ∧ S(γ). If
the formula is not satisfiable, the prototype returns no solution, that is, the
system is guaranteed to satisfy Ψ . Otherwise, it returns a substitution for which
the formula is satisfiable, that is, the conjunction of invariants is true while Ψ is
not. This substitution may correspond to a false positive in the sense that the
state represented by the substitution could be unreachable.
For experiments, we chose three classical benchmarks which we discuss below.

Train gate controller: This is a classical example from [3]. The system is
composed of a controller, a gate and a number of trains. For simplicity, Figure 3
depicts only one train interacting with the controller and the gate. The controller
lowers and raises the gate when a train enters, respectively exits. The safety
property of interest is that when a train is at location in, the gate has been
lowered: ∧i(ini → g2). When there is only one train in the system, E(γ) is enough
to show safety. When there are more trains, we use the separation constraints.

far near

x ≤ 5

in

x ≤ 5

Train

approachx := 0

x ≥ 3exit

a
p
p
ro
a
ch

ex
it

c0 c1

z ≤ 1

c2c3

Controller

z ≤ 1

exit
lo
w
er

a
p
p
roa

ch
ra
is
e

approachz := 0

z = 1
lower

z := 0exit

raise

g0 g1

y ≤ 1

g2g3

y ≤ 2

Gate

lo
w
er

ra
ise

lowery := 0

raisey := 0

y ≥ 1

Fig. 3: A Controller Interacting with a Train and a Gate

Fischer Protocol: This is a well-studied protocol for mutual exclusion [20]. The
protocol specifies how processes can share a resource one at a time by means
of a shared variable to which each process assigns its own identifier number.
After θ time units, the process with the id stored in the variable enters the
critical state and uses the resource. We use an auxiliary component Id Variable

to mimic the role of the shared variable. To keep the size of the generated
invariants manageable, we restrict to the acyclic version. The system with two
concurrent processes is represented in Figure 4. The property of interest is mutual
exclusion: (csi ∧ csj) → i = j. The component Id Variable has combinatorial
behavior and a large number of actions (2n + 1), thus the generated invariant

12

is huge except for very small values of n. To overcome this issue, we extracted
from the structure of the generated invariant a weaker inductive one which we
verified for validity locally with Uppaal. Basically, it encodes information like
heqi < hseti → heqi < heq0 ∧ hseti < heq0 for any index i. This invariant,
together with the component invariants for the processes and together with E(γ)
is sufficient to show that mutual exclusion holds.

S1 S2

S0

Id Variable

eq1, set1 eq2, set2

eq0

set1
set2

set2

set1

eq0 eq2

se
t 2

eq1

se
t 1

i1r1

x1 ≤ θ

w1 cs1

Process1

try1, x1 := 0

set1
x1 := 0

enter1, x1 > θ

enter1try1

se
t 1

i2 r2

x2 ≤ θ

w2cs2

Process2

try2, x2 := 0

set2
x2 := 0

enter2, x2 > θ

enter2 try2

se
t 2

Fig. 4: The Fischer Protocol

Temperature controller: This example is an adaptation from [9]. It repre-
sents a simplified model of a nuclear plant. The system consists of a controller
interacting with an arbitrary number n of rods (two, in Figure 5) in order to
maintain the temperature between the bounds 450 and 900: when the temper-
ature in the reactor reaches 900 (resp. 450), a rod must be used to cool (resp.
heat) the reactor. The rods are enabled to cool only after 900n units of time.
The global property of interest is the absence of deadlock, that is, the system
can run continuously and keep the temperature between the bounds. To ex-
press this property in our prototype, we adapt from [24] the definition of enabled
states, while in Uppaal, we use the query A[] not deadlock. For one rod, E(γ)
is enough to show the property. For more rods, because interactions are conflict-
ing, we need the separation constraints which basically bring as new information
conjunctions as ∧i(hrestπ(i)

− hrestπ(i−1)
≥ 1350) for π an ordering on rods.

l00

l01

l02

t0 := 1800

cool0
t0 ≥ 1800

rest0, t
0:= 0

rest0

cool0

Rod0

lc0

lc1t ≤ 900

lc2t ≤ 450

Controller

t := 0

cool, t = 900
t:=0

heat, t = 450
t := 0

heat

cool

l10

l11

l12

t1 := 1800

cool1
t1 ≥ 1800

rest1, t
1:= 0

rest1

cool1

Rod1

Fig. 5: A Controller Interacting with 2 Rods

The experiments were run on a Dell machine with Ubuntu 12.04, an Intel(R)
Core(TM)i5-2430M processor of frequency 2.4GHz×4, and 5.7GiB memory. The
results, synthesised in Table 1, show the potential of our method in terms of

13

accuracy (no false positives) and scalability. For larger numbers of components,
the size of the resulting invariants was not problematic for Z3. However, it may
be the case that history clocks considerably increase the size of the generated
formulae. It can also be observed that Uppaal being highly optimised, it has
better scores on the first example in particular and on smaller systems in general.
The timings for our prototype are obtained with the Unix command time while
the results for Uppaal come from the command verifyta which comes with the
Uppaal 4.1.14 distribution.

Model & Size Time/Space
Property E∗ ∧ S Uppaal

1∗ 0m0.156s/2.6kB+140B 0ms/8 states
Train Gate Controller & 2 0m0.176s/3.2kB+350B 0ms/13 states

mutual exclusion 64 0m4.82s/530kB+170kB 0m0.210s/323 states
124 0m17.718s/700kB+640kB 0m1.52s/623 states

2∗ 0m0.144/3kB 0m0.008s/14 states
Fischer & 4∗ 0m0.22s/6.5kB 0m0.012s/156 states

mutual exclusion 6∗ 0m0.36s/12.5kB 0m0.03s/1714 states
14∗ 0m2.840s/112kB no result in 4 hours

1∗ 0m0.172s/840B+60B 0m0.01s/4 states
Temperature Controller & 8 0m0.5s/23kB+2.4kB 11m0.348s/57922 states

absence of deadlock 16 0m2.132s/127kB+9kB no result in 6 hours
124 0m19.22s/460kB+510kB idem

Table 1: Results from Experiments. The marking “∗” highlights the cases when E alone
was enough to prove the property. The expressions of form “x + y” are to be read as
“the formula ∧iCI (Bi) ∧ II (γ) ∧ E(γ), resp. E∗(γ) ∧ S(γ), has length x, resp. y”.

5 Conclusion and Future Work

We presented a fully automated compositional method to generate global in-
variants for timed systems described as parallel compositions of timed automata
components using multi-party interactions. The soundness of the method pro-
posed has been proven. In addition, it has been implemented and successfully
tested on several benchmarks. The results show that our method may outper-
form existing exhaustive exploration-based techniques for large systems, thanks
to the use of compositionality and over-approximations.

This work is currently being extended in several directions. First, in order
to achieve a better integration within D-Finder tool [9] and the Real-Time BIP
framework [1] we are working on handling urgencies [6] on transitions. Actually,
urgencies provide an alternative way to constrain time progress, which is more
intuitive to use by programmers but much difficult to handle in a compositional
way. A second extension concerns the development of heuristics to reduce the
size of the generated invariants. As an example, symmetry-based reduction is
potentially interesting for systems containing identical, replicated components.
Finally, we are considering specific extensions to particular classes of timed sys-
tems and properties, in particular, for schedulability analysis of systems with
mixed-critical tasks.

14

References

1. T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time
applications. In EMSOFT, 2010.

2. L. D. Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In EMSOFT,
2002.

3. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994.
4. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Com-

positional invariant generation for timed systems. Technical Report TR-2013-5,
Verimag Research Report, 2013.

5. B. Badban, S. Leue, and J.-G. Smaus. Automated invariant generation for the
verification of real-time systems. In WING@ETAPS/IJCAR, 2010.

6. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In SEFM, 2006.

7. G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In QEST, 2006.

8. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed
systems. In CONCUR, 1998.

9. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

10. J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time model
checking. In FORMATS, 2008.

11. S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and
Computation, 1998.

12. P. Bouyer. Forward analysis of updatable timed automata. Form. Methods Syst.
Des., 2004.

13. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In CAV, 1998.

14. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design, 1992.

15. A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn, A. Skou,
and A. Wasowski. Compositional verification of real-time systems using Ecdar.
STTT, 2012.

16. F. S. de Boer, U. Hannemann, and W. P. de Roever. Hoare-style compositional
proof systems for reactive shared variable concurency. In FSTTCS, 1997.

17. A. Fietzke and C. Weidenbach. Superposition as a decision procedure for timed
automata. Mathematics in Computer Science, 2012.

18. G. Gardey, D. Lime, M. Magnin, and O. H. Roux. ROMEO: A tool for analyzing
time petri nets. In CAV, 2005.

19. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Inf. Comput., 1994.

20. L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 1987.
21. A. Legay, S. Bensalem, B. Boyer, and M. Bozga. Incremental generation of linear

invariants for component-based systems. In ACSD, 2013.
22. S.-W. Lin, Y. Liu, P.-A. Hsiung, J. Sun, and J. S. Dong. Automatic generation of

provably correct embedded systems. In ICFEM, 2012.
23. R. B. Salah, M. Bozga, and O. Maler. Compositional timing analysis. In EMSOFT,

2009.
24. S. Tripakis. Verifying progress in timed systems. In ARTS, 1999.
25. F. Wang. Redlib for the formal verification of embedded systems. In ISoLA, 2006.

15

