

#### Model Transformations for Embedded System Design and Virtual Platforms

Nikos Matragkas, Ian Gray, Richard Paige, <u>Dimitris</u> <u>Kolovos</u>, Neil Audsley, Leandro Indrusiak

> Department of Computer Science The University of York

# MDE for Embedded Systems

 MADES investigates a model-centric approach to embedded systems development

- Models are the main artefacts of the development process
- Models are automatically analysed, verified and then transformed into concrete artefacts
  - Hardware specifications, code, configuration files
- Aims: correctness, consistency, productivity, cost-effectiveness

#### MADES Artefacts and Workflow



# MADES Design Models

Specified in the MADES modelling language

- Reuses parts of UML, MARTE and SysML
- Tailored for Embedded Systems
- 10 diagrams types
  - Requirements, High-Level Structure, Hardware
  - Software, Allocation, Time
  - Activity, Sequence, State, Use case, Interaction (ext)
- Tool support
  - Modelio (Softeam), Papyrus (open-source)

### Model Transformation in MADES

 Aim: Transform MADES design models into other representations automatically

- To achieve consistency, productivity and correctness by construction
- Two types of model transformations
  - Model-to-model (M2M) transformations
  - Model-to-text (M2T) transformations

## Enabling Technologies: EMF

- Eclipse Modelling Framework (EMF)
  - Sub-project of Eclipse Modelling
  - Supports the definition of modelling
    Ianguages
  - Standards compliant XMI model serialisation
    - Modelio exports models in XMI, Papyrus built on EMF

MADES

emf

- Mature open-source project
- Lots of tooling built atop it
  - e.g. GMF, Graphiti for graphical editors

## Enabling Technologies: Epsilon

- Epsilon (<u>www.eclipse.org/gmt/epslon</u>)
  - Sub-project of Eclipse Modeling
  - Provides consistent and interoperable languages for model transformation
    - M2M and M2T transformation
    - + languages for model validation, comparison, refactoring
  - Seamless integration with Eclipse/EMF
    - Eclipse-based editors, launchers, ANT tasks



## Enabling Technologies: M2T

- Epsilon Generation Language (EGL)
  - Template-based (i.e. like PHP/JSP)
  - Metamodel-agnostic
    - Can generate text/code from any EMF-based model

- Target-agnostic
  - Can generate text/code in any language
- Support for preserving hand-written code
  - Protected regions in templates

## Enabling Technologies: M2M

Epsilon Transformation Language (ETL)

- Rule-based
  - Automated rule scheduling
- Hybrid style
  - Imperative style can be used for complex transformations
- Can access an arbitrary number of models
  - Not only suitable for 1-1 transformations
- Interoperates seamlessly with EGL (M2T)

# Enabling Technologies: M2T

- EMFText (<u>http://www.emftext.org</u>)
- Specify textual syntaxes for (modelling) languages



- Parser generator on steroids
- Produces, parser, fully-blown editor, M2T, T2M from a grammar
- Use EMFText to develop support for MHS
  - Existing language for Microprocessor Hardware Specification

### MADES to Zot M2T Transformation







### MADES to Hardware Specification



### MADES to Hardware Specification

| L L<br>M M<br>B B | Bus Interfaces   | Bus Interfaces Ports Addresses |                      |            | 23 BEGIN microblaze                                                                              |
|-------------------|------------------|--------------------------------|----------------------|------------|--------------------------------------------------------------------------------------------------|
|                   | Name             | Bus Connection                 | IP Type              | IP Version | 24 PARAMETER INSTANCE = microblaze_0                                                             |
| 20                | 🔁 🧼 microblaze 0 |                                | microblaze           | 7.10.d     | 26 PARAMETER HW VER = 7 10 a                                                                     |
|                   | TRACE            | micmblaze () TRACE             |                      |            | 27 PARAMETER C USE FPU = 1                                                                       |
|                   | DEBUG            | microblaze 0 dbg               |                      |            | 28 PARAMETER C DEBUG ENABLED = 1                                                                 |
|                   | IVCI             | microblaze_0_dbg               |                      |            | 29 BUS INTERFACE DLMB = dlmb                                                                     |
|                   | DVCI             | microbiaze_0_IACL              |                      |            | 30 BUS INTERFACE ILMB = ilmb                                                                     |
|                   | DAGE             | microbiaze_U_DACL              | 120                  |            | 31 BUS_INTERFACE DPLB = mb_plb                                                                   |
|                   | IPLB             | dlq_dm                         | <u>×</u>             |            | 32 BUS_INTERFACE IPLB = mb_plb                                                                   |
| Sau al            | - DPLB           | mb_plb                         | ×                    |            | <pre>33 BUS_INTERFACE DEBUG = microblaze_0_dbg</pre>                                             |
| <u> </u>          | - ILMB           | ilmb                           | ×                    |            | 34 PORT MB_RESET = mb_reset                                                                      |
| 0- <b>0</b> -     | DLMB             | dlmb 🗧                         | ~                    |            | 35 END                                                                                           |
|                   | 🗢 dimb           |                                | lmb_v10              | 1.00.a     | 36                                                                                               |
|                   | ilmb             |                                | Imb_v10              | 1.00.a     | 37 BEGIN plb_v46                                                                                 |
|                   | 🖃 🧼 mb plb       |                                | plb v46              | 1.03.a     | 3B PARAMETER INSTANCE = mb_plb<br>39 PARAMETER HW_VER = 1.02.a<br>40 POPT PIB CILE = size cile = |
|                   | SDCR             | No Connection                  |                      |            |                                                                                                  |
|                   | E dimb cotic     | 1                              | Imb bram if cottr    | 210a       | 41 DODT SVS Dat = ave hus reset                                                                  |
|                   | BRAM PORT        | dimb part                      | into _ordin_i _ordin |            | 42 END                                                                                           |
|                   | CIMP             | dimb                           |                      |            |                                                                                                  |
| <b>V</b>          | SLMD             | GIIID                          | <u>.</u>             |            |                                                                                                  |

MADES

The MHS (Microprocessor Hardware Specification) file is the main source file representing the hardware part of the embedded system. This file contains the processor and all peripheral instantiations along with their parameters.

### MADES to Platform-Agnostic Code





### Model Transformations in MADES



#### MADES to Hardware Architecture for CTV



#### \*CTV: Compile-Time Virtualisation

### Conclusions

 Model Transformation is an essential part of the MADES methodology

- Enhances automation, consistency
- Facilitates interoperation between different tools of the tool-chain
  - MADES -> Zot, MADES->MHS
- Transformations help to evaluate the expressiveness of the MADES language
- Transformations specify the semantics of the MADES language