
Compositional Analysis Using
Component-Oriented Interpolation

Viet Yen Nguyen1,2, Benjamin Bittner3,4,
Joost-Pieter Katoen2, and Thomas Noll2

1 Fraunhofer IESE, Germany
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

3 Embedded Systems Group, Fondazione Bruno Kessler, Italy
4 ICT School, University of Trento, Italy

Abstract. We present a novel abstraction technique that exploits the
compositionality of a concurrent system consisting of interacting compo-
nents. It uses, given an invariant and a component of interest, bounded
model checking (BMC) to quickly interpolate an abstraction of that com-
ponent’s environment. The abstraction may be refined by increasing the
BMC bound. Furthermore, it is only defined over variables shared between
the component and its environment, resulting in an aggressive abstrac-
tion with several applications. We demonstrate its use in a verification
setting, as we report on our open source implementation in the NuSMV
model checker which was used to perform a practical assessment with
industrially-sized models from satellite case studies of ongoing missions.
These models are expressed in a formalized dialect of the component-
oriented and industrially standardized Architecture Analysis and Design
Language (AADL).

1 Introduction

An earlier work [11] reports on the application of a wide range of model check-
ing techniques for validating a satellite platform of an ongoing mission. This
industrially-sized model was expressed in a formalized dialect [2] of the Archi-
tecture Analysis and Design Language [12]. This AADL dialect is a component-
oriented formalism in which components interact through data and event ports
(i.e. shared variables). The sheer size of models was particularly visible once fail-
ures were injected. The nominal state space of roughly 48 million states exploded
by a factor 213563 due to the activation of failure modes and the fault manage-
ment functionality for handling it. The model checkers used in literature had a
hard time on this model. Various techniques have been proposed in literature to
cope with similar instances of the infamous state space explosion problem. In the
context of this paper, compositional reasoning and interpolation are particularly
relevant.

The compositional reasoning technique by [8] was our starting point. It
generates a so-called split invariant defined over the system’s global variables for
each parallel process. The split invariants are then checked against the property



instead of the full composition of processes. It was shown later [15, 18] that this
technique, along with Cartesian abstract interpretation [18] and thread-modular
verification [13], is conceptually the same as the classical Owicki-Gries paradigm,
but differs in the details. They generally work well for parallel systems where
processes communicate over a small set of global variables, i.e. variables that are
visible to all processes. In the satellite models, components are highly cohesive
through shared variables, as variables of one component are only visible to a
handful of other components. The techniques from the Owicki-Gries paradigm
are ineffective here as naively all shared variables would have to be interpreted
as global variables, which would make it a near-monolithic model checking
problem again. Another branch of compositional reasoning is the rely/assume
guarantee/provide techniques. There is a huge body of work behind this. The most
related ones are the automated methods that use learning techniques to generate
assumptions [5]. Our work is a twist on this, because instead of learning we use
interpolation to generate an assumptive environment. The use of interpolation
techniques [9] in model checking was pioneered by McMillan [19]. Also this led
to a substantial body of work. To our knowledge, it however has not been cast
into a compositional reasoning scheme as we describe in this paper.

Contributions: The contributions of this paper are as follows.

– A theory inspired by Craig interpolation that results in an aggressive ab-
straction of the environment of a component of interest, resulting into a
component-oriented interpolant.

– A rudimentary (re)verification algorithm that exploits this theory.
– An open source implementation of the algorithm in NuSMV 2.5.4 [4].
– An evaluation of the theory and implementation using industrially-sized

models from satellite platform case studies of ongoing missions.

Organization: Section 2 explains applicable background information and intro-
duces the majority of the formal notation used in this paper. Section 3 describes
the theoretical contribution of this paper, the component-oriented interpolant.
We implemented it into an algorithm and evaluated it using satellite platform
case studies on which we report in Section 4. Related work and the conclusions
are discussed respectively in Sections 5 and 6.

2 Preliminaries

Our work builds upon existing works in satisfiability (SAT) solving, bounded
model checking and Craig interpolation. These are discussed in the following.

SAT Solving Propositional formulae consist of literals, which are Boolean variables
(e.g. x1) that can be negated (e.g. ¬x1), and are combined by AND (i.e. ∧) and OR
(i.e. ∨) operators. They are typically processed from their conjunctive normal form
(CNF) where the formula consists of conjuncted clauses (e.g. (¬x1) ∧ (x1 ∨ ¬x2))
and each clause is a disjunction of literals (e.g. (x1 ∨¬x2)). As we can view CNF



formulae as a set of clauses, we use the set membership notation to check whether
a clause is part of a CNF formulae, e.g. (x1 ∨ ¬x2) ∈ A with A being a CNF
formula. A classical decision problem is whether, given a propositional formula,
there exists a satisfying assignment, i.e. a vector of values holding either true
(i.e. >) or false (i.e. ⊥) for each variable. This is the NP-complete SAT problem.
Yearly competitions have highly stimulated research in this area, progressing
modern SAT-solvers to handle formulae with thousands of variables in mere
seconds. They typically generate the satisfying assignment, denoted as σ, as
a proof of satisfiability. In case of unsatisfiability, some SAT-solvers provide a
resolution refutation graph as a proof [19]. An example of a resolution refutation
graph is shown in Figure 2. It is a directed acyclic graph G = (V,E), where V
is a set of clauses (not necessarily a subset of the original formula). If a vertex
v ∈ V is a root (there are usually multiple), then it is a clause in the original
formula. Otherwise the vertex has exactly two predecessors, v1 and v2 of the form
v1 = x ∨D and v2 = ¬x ∨D′. The clause v is the simplification of D ∨D′ and
x is its pivot variable. There is only one leaf which is the empty clause ⊥. The
resolution graph reasons how clauses, starting from the root clauses, have pivot
variables that can be eliminated, as they contribute to the inconsistency. Once all
variables are eliminated, the empty clause ⊥ is reached, indicating unsatisfiability.

Bounded Model Checking Propositional formulae can be used to verify a property
(e.g. φ) of a model M = (I, T ). The initial condition I(s̄) is a Boolean formula
over a finite set of variables, e.g. s̄ = s1, . . . , sn. The set of occurring variables is
denoted by the predicate var, e.g. var(I) = {s1, . . . , sn}. Whenever a particular
valuation σ of s̄ satisfies I, i.e. σ(I) = >, then σ is an initial state. Multiple
distinct initial states may satisfy I. The transition function, denoted as T (s̄× s̄′),
is a propositional function with s̄ = s1, . . . , sn and s̄′ = s′1, . . . , s

′
n. Note that the

cardinalities of s̄ and s̄′ are equal. If for a pair of valuations σ and σ′ the transition
function holds, i.e. σσ′(T ) = >, then σ′ is a valid successor state to state σ. The
initial condition and the transition function are used to compute the reachable
states up to a natural bound k using the formula I[s̄/r̄0] ∧

∧k
i=1 T [s̄/r̄i−1, s̄

′/r̄i].
It uses the substitution operator T [x/y] to denote that all occurrences of x in T
are substituted by y. We refer to I0 ∧ T1 ∧ · · · ∧ Tk as its simplified notation. An
invariant φ can be verified by conjuncting its negated unrolling,

∨k
i=0 ¬φ[s̄/r̄i], to

it. To ease notation, we simply refer to this formula as ¬φ. The resulting formula,
I0∧

∧k
i=1 Ti∧¬φ, can be checked for satisfiability. If it is satisfiable, the satisfying

assignment is a counterexample to the invariant. If it is unsatisfiable, then the
invariant holds up to bound k, which is denoted by M |=k φ. An outcome w.r.t.
the full state space is however inconclusive [1].

Example 1 (Two-Bit Counter). Part of our running example is a simple two-bit
counter that is initialized to 0. It is incremented by 1 with each transition until
it hits the value 3. The Boolean encodings of its initial condition and transition



functions look as follows:

I = ¬α ∧ ¬β
T = (¬α ∨ α′) ∧ (¬α ∨ β′) ∧ (α ∨ ¬α′ ∨ β) ∧ (α ∨ ¬β ∨ ¬β′) ∧ (α′ ∨ β′)

Its one-step unrolling looks as follows:

I0 ∧ T1 = (¬α0 ∧ ¬β0) ∧ (¬α0 ∨ α1) ∧ (¬α0 ∨ β1)

∧ (α0 ∨ ¬α1 ∨ β0) ∧ (α0 ∨ ¬β0 ∨ ¬β1) ∧ (α1 ∨ β1)

(end of example)

Interpolation Our work is heavily inspired by Craig’s seminal result [9].

Theorem 1 (Craig’s Interpolation Theorem). Let A and B be formulae of
first-order logic. If A =⇒ B holds, then there exists an interpolant C expressed
using the common variables of A and B, i.e. var(C) ⊆ var(A) ∩ var(B), such
that A =⇒ C and C =⇒ B holds.

A proof of this theorem restricted to propositional logic can be found in [3]. The
beauty of this theorem is that the interpolant C is expressed using a subset of the
variables in A. This powerful notion inspired us for developing our compositional
reasoning technique.

Note that Craig’s theorem only postulates the existence of an interpolant
when A =⇒ B. This can be verified with a SAT-solver. Observe that A =⇒ B
is equivalent to ¬(A ∧ ¬B). This means its tautology infers the contradiction of
A∧¬B. By Craig’s interpolation theorem it follows that if A∧¬B is unsatisfiable,
there exists an interpolant C such that A =⇒ C holds and C∧¬B is unsatisfiable.
Thus in this shape, the unsatisfiability of a formula indicates the existence of
an interpolant. It is shown in [20] how an interpolant C is generated from the
resolution refutation proof resulting from the unsatisfiability of A∧¬B. We use a
similar approach to abstract a component’s environment as a transition function.

3 Component-Oriented Interpolation

Our setting is a concurrent system composed of processes (also referred to as
components with behavior) using a parallel composition operator. We leverage
this composition to reason over its behaviour in a compositional manner. In
the upcoming, we will describe our approach in the synchronous case only,
i.e. all components transit per global transition. It can however be extended
to the asynchronous case (i.e. interleaving transitions) by complementing the
asynchronous model with an interleaving scheduler component that regulates
which component progresses upon a transition.

Consider a synchronous composition of n processes M1, . . . ,Mn, with their
associated transition relations T i and initial conditions Ii such that T =

∧n
i=1 T

i

and I =
∧n

i=1 I
i. When this is applied to the bounded model checking formula,



the result is
∧n

i=1 I
i
0 ∧

∧n
i=1 T

i
1 ∧ . . . ∧

∧n
i=1 T

i
k ∧ ¬φ. We can now isolate any

process Mp such that the remainder processes, i.e. process p’s environment, shall
be abstracted through interpolation. It then becomes more apparent how A and
¬B are to be determined:

Ip0 ∧ T
p
1 ∧ . . . ∧ T

p
k ∧ ¬φ︸ ︷︷ ︸

¬B

∧ I 6=p
0 ∧ T 6=p

1 ∧ . . . ∧ T 6=p
k︸ ︷︷ ︸

A

(1)

In the above, I 6=p
0 =

∧
q∈{1,...,n}\{p} I

q
0 , and similarly for T 6=p

i .

Example 2 (Counter Monitor). Let us refer to the counter example of Example 1
as M1. We now add a monitoring process, M2, that among its functions, raises a
flag when the counter exceeds 2. The Boolean encoding of M2, where both delta
and γ are flags and the latter being the flag of interest, looks as follows:

I2 = ¬γ ∧ δ
T 2 = (¬α ∨ ¬β ∨ ¬δ′) ∧ (¬α ∨ γ′) ∧ (α ∨ ¬γ) ∧ (α ∨ ¬γ′) ∧ (β ∨ ¬γ) ∧ (δ′ ∨ γ)

From this point on we shall use the synchronous composition M1 ∧M2 as our
ongoing running example. Let us say we are interested to see whether the flag γ
always stays unraised, i.e. the invariant ¬γ. And let us isolate process M1, i.e.
p = 1, from the synchronous composition. This isolation on a two-step BMC
unrolling would look as follows:

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)︸ ︷︷ ︸
¬B

∧ I20 ∧ T 2
1 ∧ ∧T 2

2︸ ︷︷ ︸
A

(2)

(end of example)

From Theorem 1, it follows that whenever the invariant holds within bound
k, there exists an interpolant C, such that it is implied by A. Intuitively, the
interpolant C can be perceived as an abstraction of the k-fold unrolled en-
vironment of process p. It is significantly smaller than the original formula
representing the k-bounded environment, since it is only defined over the vari-
ables used for interacting with process p over bound k. That is, var(C) ⊆
var(I 6=p

0 , T 6=p
1 , . . . , T 6=p

k )∩var(Ip0 , T
p
1 , . . . , T

p
k , φ), where var(S1, . . . , Sn) is a short-

hand for var(S1)∪. . .∪var(Sn). Observe that C is not a formula over current/next
states, because it is interpolated from the unrolling of T 6=p instead of T 6=p itself.
In that form, the interpolant C is only useful for k-bounded reverification of com-
ponent p. We strive for a different kind of interpolant that is useful for unbounded
analysis of component p. We call it the component-oriented interpolant.

To this end, let us have a closer look at the sharing of variables in the
component-oriented interpolation setting, as it is slightly different from Craig
interpolation. In the latter, there are two sets of variables that can be partitioned
into three disjoint sets of variables, namely var(A)\var(B), var(B)\var(A) and
var(A)∩var(B). This is shown in Figure 1a where the sets are respectively denoted
as ā, b̄, c̄. In our component-oriented setting, there are three sets of variables



āA b̄ Bc̄

(a) Craig

āT 6=p
i

ē

T 6=p
6=i

ḡ B

d̄

b̄

f̄
c̄

(b) Component-oriented

Fig. 1: Relation of variables in both interpolation settings.

which can be partitioned into seven disjoint sets. See Figure 1b. Consider any step
i by component p’s environment, i.e. T 6=p

i (ā, b̄, c̄, d̄). The remainder environment

transition steps are T 6=p
6=i (ē, d̄, c̄, f̄) and the transition steps by component p and

the property φ are B(ḡ, f̄ , c̄, b̄). The variables of I 6=p
0 are omitted here for clarity

and are covered w.l.o.g. by the variables of T 6=p
1 .

Example 3 (Variable Sharing in Counter Monitor). Reconsider Equation (2), the
two-step BMC unrolling of the counter monitor (cf. Example 2). The variable
partitioning of that unrolling in the Craig interpolation case is: ā = {α2, β2},
b̄ = {α0, α1, β0, β1, γ0, γ1, γ2} and c̄ = {δ0, δ1, δ2}.

The partitions are more fine-grained in the component-oriented interpolation
case. If we would take p = 1 and i = 1 on our running example, we would get
the following arrangement out of Equation (2):

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)︸ ︷︷ ︸
¬B

∧ I20 ∧ T 2
1︸ ︷︷ ︸

T 6=1
1

∧∧T 2
2︸︷︷︸

T 6=1
6=1

The partitioning of Figure 1b then applies, resulting in the following partitioning:

ā = {δ0, δ1}
b̄ = {α0, β0, γ0}
c̄ = {γ1}

d̄ = {}
ē = {δ2}
f̄ = {α1, β1, γ2}

ḡ = {α2, β2}

(end of example)

We use the finer grained notion of variable sharing in Figure 1b to construct
component-oriented interpolants by traversing the resolution refutation graph of
Equation (1) for each step i of component p’s environment:

Definition 1 (Component-Oriented Interpolant Construction). Let us
consider step i ≤ k of a component p’s environment. Furthermore, let G = (V,E)
be the resolution refutation graph of Equation (1) and partition the occurring
variables into disjoint sets according to Figure 1b. For each non-root vertex v ∈ V ,



let v1 and v2 be its predecessors and x its pivot variable. Then, with each v ∈ V
we associate a Boolean formula Ci

v given as follows

Ci
v =



⊥ if v ∈ T 6=p
i and v is root

> if v ∈ T 6=p
6=i ∪ I 6=p ∪B and v is root

(¬x ∧ Ci
v1) ∨ (x ∧ Ci

v2) if x ∈ b̄ ∪ c̄, x ∈ v1, ¬x ∈ v2, and v is non-root

Ci
v1 ∨ C

i
v2 if x ∈ ā ∪ d̄ and v is non-root

Ci
v1 ∧ C

i
v2 if x ∈ ḡ ∪ f̄ ∪ ē and v is non-root

If Definition 1 is applied starting from the leaf ⊥, one gets a component-oriented
interpolant for T 6=p

i .

Example 4 (Component-Oriented Interpolation on Counter Monitor). Consider
Figure 2. As it is an unrolling for two timesteps, there are partial interpolants for
the first and second timestep, i.e. respectively C1

v and a C2
v . Take for example

the upper-left three-node subtree. That is v = ¬γ1 and its two predecessors as
v1 = α0 ∨¬γ1 and v2 = ¬α0. The pivot is therefore α0. As we determined earlier
in Example 3 that α0 is in b̄, the partial interpolant of v for transition step 1
becomes (¬α0 ∧C1

v1)∨ (α0 ∧C1
v2). Since C1

v1 = ⊥ and C1
v2 = >, this is simplified

to C1
v = α0. (end of example)

This interpolant is weak enough to preserve the over-approximation from
Craig interpolation, i.e. T 6=p

i =⇒ Ci
⊥. This is captured by the following lemma:

Lemma 1 (Over-Approximation by Component-Oriented Interpolant).
Let σ be a valuation such that σ(v) = ⊥ for any v ∈ V in Definition 1. For any
1 ≤ i ≤ k, the following holds:

σ(Ci
v) = ⊥ =⇒ ∃a ∈ T 6=p

i :: σ(a) = ⊥ (3)

Intuitively, this means that whenever the partial interpolant Ci
v evaluates to false

for a particular valuation, a clause of T 6=p
i evaluates to false as well for the same

valuation, causing the whole formula (see Equation (1)) to evaluate to false.

Proof. Due to paper size constraints, we only provide a proof sketch. The full
proof is by induction on the structure of Ci

v and follows the reasoning in [21].
The base case is trivial to show. For the inductive step, there are three cases,
namely that the pivot variable x of vertex v is either in b̄ ∪ c̄ or in ā ∪ d̄ or in
ḡ ∪ f̄ ∪ ē. See Figure 1.

By the definition of the resolution refutation graph, each non-root vertex
has two predecessors v1 and v2. It can be shown that regardless of each of the
three cases, whenever σ(Ci

v) = ⊥ either predecessor branch evaluates to false
for both the intermediate component-oriented interpolant and the predecessor
vertex, e.g. σ(v1) = ⊥ and σ(Ci

v1
) = ⊥. Then by induction, Equation (3) can be

concluded. ut

Contrary to Craig interpolation, we cannot conclude σ(Ci
v) = > =⇒ ∃b ∈

B :: σ(b) = ⊥ and thus preserve the unsatisfiability of Equation (1) using the



⊥
¬γ1 ∨ (γ1 ∧ α0)
¬γ2 ∨ (γ2 ∧ α1)

¬γ2
>
α1

¬α1

>
>

β0 ∨ ¬α1

>
>

¬α0

>
>

I1

∈
α0 ∨ β0 ∨ ¬α1

>
>

T 1
1

∈

¬β0
>
>

I1

∈

α1 ∨ ¬γ2
>
⊥

T 2
2

∈

γ2
¬γ1 ∨ (γ1 ∧ α0)

>

γ1 ∨ γ2
>
>

γ0 ∨ γ1 ∨ γ2
>
>

φ

∈
¬γ0
>
>

I2

∈

¬γ1
α0

>

¬α0

>
>

I1

∈
α0 ∨ ¬γ1
⊥
>

T 2
1

∈

Fig. 2: An annotated resolution refutation graph from our two-step BMC unrolling of Equation (2). Each node contains three
lines. The first line identifies the vertex v ∈ V . The second and third lines are respectively C1

v and C2
v obtained through the

application of Definition 1. The root nodes are annotated with ∈, meaning that the clause identifying the vertex is part of the
formula, e.g. ¬α0 ∈ I1.



component-oriented interpolant. It could also be that whenever the component-
oriented interpolant evaluates to true, a clause in T 6=p

6=i evaluates to false. Or

that a clause in I 6=p evaluates to false. In that sense, the component-oriented
interpolant is significantly weaker than a Craig interpolant. It is however strong
enough for our practical purposes, as is demonstrated later in Section 4.

The component-oriented interpolant Ci
⊥ only derives an interpolated environ-

ment for transition step i, i.e. T 6=p
i =⇒ Ci

⊥. By substitution of the occurring
variables to current and successor-state variables, it can be used as a transition
function for the unbounded case. This holds for each 1 ≤ i ≤ k. So in general,
the following definition and theorem are applicable:

Definition 2 (Interpolated Environment). Let the component-oriented in-
terpolants C1

⊥, . . . , C
k
⊥ be derived from the resolution refutation graph of Equa-

tion (1) using Definition 1. The component-oriented interpolated environment
transition function, defined as Ep, can be derived as such:

Ep =

k∧
i=1

Ci
⊥(r̄i−1, r̄i)[r̄i−1/s̄, r̄i/s̄

′]

Theorem 2 (Over-Approximation by Interpolated Environment). Let
Ep be given according to Definition 2. It then follows that

T 6=p =⇒ Ep (4)

Proof. This follows from Lemma 1 which shows that T 6=p
i =⇒ Ci

⊥. As

var(Ci
⊥) ⊆ var(T 6=p

i ), it follows that T 6=p =⇒ Ci
⊥[r̄i−1/s̄, r̄i/s̄′]. By com-

position of implications of each i, Equation (4) follows. ut

Example 5 (Transition Function from Component-Oriented Interpolants). Let
us apply Definition 2 on the component-oriented interpolants C1

⊥ and C2
⊥ from

our running example (cf. Figure 2). That is, we substitute the occurring timed
variables into current and next-state variables:

Ep = C1
⊥[α0/α, γ1/γ

′] ∧ C2
⊥[α1/α, γ2/γ

′]

= (¬γ1 ∨ (γ1 ∧ α0))[α0/α, γ1/γ
′] ∧ (¬γ2 ∨ (γ2 ∧ α1))[α1/α, γ2/γ

′]

= ¬γ′ ∨ (γ′ ∧ α)

= α ∨ ¬γ′

Since we partitioned T 6=p = T 2 in Equation (2), it follows from Equation (4) that
T 2 =⇒ α ∨ ¬γ′. This is clearly evident from the definition of T 2 in Example 2,
where the interpolated environment is in fact the third clause. Component-
oriented interpolation therefore reduces the original transition function to 1/6th

of the amount of clauses. (end of example)



Applications Theorem 2 can be applied in several ways. We elaborate on a few
possible applications in the following.

Manual inspection for example becomes more feasible. Models as large and
complex as the one mentioned in Section 1 are labor-intensive to analyze manually,
yet this is often the pragmatical approach by industry for verifying/validating
involved requirements. The interpolated environment of Theorem 2 can support
this. Assume one is intimate with a particular (set of) component(s), e.g. the
power system. The remainder components can be viewed as a rather unfamiliar
environment that can be abstracted in terms of variables shared with the power
system. Such an abstraction is significantly smaller and thus eases manual
inspection. The abstraction is cheap to compute, as it can be obtained for a
bound as small as k = 1, although a larger k is preferable since this possibly
strengthens the accuracy of the environment.

It can also be used as an abstraction method in model checking. Consider
the invariant checking case and assume a tractable bound k for M |=k φ. Yet
it is unclear whether it holds beyond the tractable bound k. One can pick a
component p and use Theorem 2 to over-approximate the remainder to Ep.
Heuristically it is wise to include at least the component directly referred by φ
as p, as they directly affect the property of interest. Then the smaller model
(Ip, T p ∧Ep) can be subjected to unbounded model checking to verify M |= φ.
An example of such an algorithm is discussed later in Section 4. Note that the
transition function T p ∧ Ep could be too weak. Thus, if a counterexample is
found during unbounded model checking, one has to distinguish whether it is a
false-negative due to over-approximation of Ep, or whether it is a counterexample
that also occurs in the original model. Techniques from CEGAR (counterexample
guided abstraction refinement) [10, 7] can be utilized for this. Theorem 2 can
also supplement existing CEGAR techniques, as it can generate computationally
cheap abstractions.

Partial model reverification is also a suitable application. In monolithic model
checking, refinements or changes of the model require a full reverification round.
Theorem 2 can speed this up. Assume only a part of the model is changed,
for example component p. The unchanged environment can be interpolated
from previous verifications. The resulting interpolated environment is smaller
in size. Instead of reverifying the full model, the modified component p and the
interpolant of the unchanged environment Ep can be used. Since reverification
with the smaller model (Ip, T p ∧ Ep) is likely to be faster, as less variables
are present, it can be used less reluctantly upon changes to component p, thus
providing more direct and continuous feedback during the construction of the
model. Note that here over-approximation might cause false counterexamples as
well and therefore warrant the use of CEGAR techniques.

4 Evaluation on Satellite Case Studies

We developed a prototype implementation utilizing Theorem 2 in NuSMV 2.5.4
and applied it to industrially-sized models of satellite case studies reported in



[11]. The resulting data provides an indication of the quality of the abstraction,
as well as its effectiveness when used for manual inspection or (re)verification.

Tool Implementation The prototype implementation is an extension of NuSMV
2.5.4 [4]. We reused NuSMV’s data structures and functionality for representing
and handling propositional formulae. The SAT-solving was performed by MiniSAT
1.14p. We deliberately chose version 1.14p over newer versions, as it is – at
the moment – the only publicly available version that can generate resolution
refutation graphs upon unsatisfiability. Additionally, NuSMV has a preexisting
integration with MiniSAT which we extended for handling those graphs. The
models are expressed in SLIM, a formalized dialect of AADL. We used the
SLIM-to-SMV translator built in the COMPASS toolset for obtaining their SMV
representations [2].

Case Description We ran our evaluation with two large industrially-sized models.
They are system-software models based on design data of Earth-orbiting satellites
in development.

Satellite

Payload

Platform

AOCS

EPS

TT&C

OCS

CDU
OBDH RM

Control & 
Data Unit

Reconfiguration 
Module

Attitude & 
Orbit Control 

System

Power

Onboard Data 
Handling

Telemetry, 
Tracking &
Command

Propulsion

Fig. 3: Decomposition of the PDR satellite model.

The first model is from the case study reported in [11]. We call it the PDR
satellite platform model. It was constructed from the design data available during
the satellite’s preliminary design review (PDR). Its global decomposition into
subsystems is shown in Figure 3. The OCS consists of a series of controllable
thrusters for orbital corrections. The AOCS is a control system consisting of
several kinds of sensors for acquiring and maintaining a correct attitude and
orbit. The CDU is the main computer. The EPS consists of solar arrays and
batteries for powering the satellite and the TT&C is the radio communication
interface for ground control on Earth. The focus of the PDR model is the relation
of the system’s nominal behavior, its erroneous behavior (e.g. faults) and the
subsequent behaviors resulting from the fault tolerance strategies by the fault



management design. Its nominal state space is roughly 48 million states. This
number multiplies rapidly when failures are injected, thus activating failure
modes and the associated fault management strategies. The case is modeled in
our AADL dialect and comprises 3,831 lines of code, not counting comments.

The second model is a refinement of the PDR model. We call it the CDR
model. It was crafted from the design data available during the critical design
review (CDR) of the same satellite mission. During the CDR, more design details
have been decided upon. It is estimated that the amount of design data increased
twofold. The CDR model’s nominal behavior state space nevertheless counts
2,341 states thanks to the effective modeling lessons learned from the PDR case
study. The CDR model is however more detailed, more complex and more difficult
to analyze. Akin to the PDR model, its state space multiplies once failures are
injected. It is composed of 6,357 lines of AADL code, not counting comments. A
more detailed report of this model is currently being prepared for publication.

We considered several configurations of the PDR and the CDR models. The
final configurations outlined below are known to require a bound k > 1 for proving
or disproving the invariant property of interest [11]. The first two configurations
are from the PDR model, whereas the remaining three are from the CDR model.
Note that the models are based on proprietary designs. Their details are therefore
not publicly available.

Model Fault Injections Property

PDR-1 Earth sensor failure fail-operational flag is set
PDR-2 Propulsion failure AOCS status flags are consistent

CDR-3 Various platform failures not in safe mode
CDR-4 (none, i.e. nominal behaviour) solar voltage level is consistent
CDR-5 (none, i.e. nominal behaviour) not in safe mode

Comparison Factors All experiments were run on a Linux 64-bits machine
equipped with a 2.33 GHz multi-core CPU and 32 GB RAM. We set the maximum
computation time to 900 seconds. Our implementation is however single-threaded.
The exploitation of the multiple cores in a multi-threaded fashion is future work.

We intended to use NuSMV’s BDD-based verification as the baseline. We
however quickly learned that the BDDs were ineffective on both the PDR and CDR
model. BDD-based verification was a magnitude slower on PDR configurations
than the other techniques we considered (see Table 1). On CDR configurations,
the time for constructing the transition functions exceeded the 900 seconds by
far, thus leaving no time for the verification. We therefore omit BDD-verification
data and decided upon another technique as the baseline.

We used McMillan’s interpolation-based unbounded model checking technique
for invariants [20] instead. It starts by k-bounded model checking the property.
Then it (Craig) interpolates the first transition step C =⇒ I ∧ T1. This
interpolant is a weakened characterization of one-step successor states s̄1. These
states are added to I by variable substitution, i.e. I ← I ∨C[s̄1/s̄0]. The new I is
a characterization of the original initial states and the one-step successor states. It



is then used to bounded model check the property up to bound k, thus reaching a
search depth of k+ 1. This is repeated until a fixpoint is reached. A sketch of the
algorithm can be found in [20]. It is furthermore also part of Algorithm 1 from
lines 5 to 8, which we shall explain shortly after. We implemented the algorithm
in NuSMV as there was no pre-existing implementation. The interpolation scheme
we implemented is by McMillan as well [19] and it has been studied thoroughly
for use in this setting [10].

The component-oriented interpolation technique has been casted into a ver-
ification scheme. We heuristically chose the components p by selecting those
directly referred in the property. Given this, the remaining procedure is shown in
Algorithm 1. Intuitively, it obtains an interpolated environment (line 3), which
is then used in an inner reachability analysis (lines 5-8) until a fixpoint is en-
countered (line 8), meaning that the property holds. Otherwise, the bound is
increased in the hope for a stronger interpolated environment (line 9). The overall
algorithm can terminate in two ways: either a concrete (and real) counterexample
is eventually found at depth k while executing line 2, or reachability analysis on
the over-approximated model reaches a fixpoint without violation of the property
(line 8). Note that even though any inner reachability algorithm could be used,
we employed McMillan’s interpolant-based invariant checking algorithm here.
This is mainly for efficiency reasons of staying in a SAT-based context. If for
example BDD-based reachability techniques were used, we would have to convert
Ep, Ip and T p to BDDs, resulting in additional overhead.

Algorithm 1 Component-Oriented Interpolation-based Invariant Checking.

1: k ← 1
2: while ¬φ ∧ Ip0 ∧ T

p
1 ∧ · · · ∧ T

p
k ∧ I

6=p
0 ∧ T 6=p

1 ∧ · · · ∧ T 6=p
k is unsatisfiable do

3: Ep ← component-oriented interpolant of I 6=p
0 ∧ T 6=p

1 ∧ · · · ∧ T 6=p
k

4: R← Ip

5: while R ∧ T p
1 ∧ E

p
1 ∧ · · · ∧ T

p
k ∧ E

p
k¬φ is unsatisfiable do

6: C ← Craig interpolant of R ∧ T p
1 ∧ E

p
1

7: if C ∧ ¬R is satisfiable then R← R ∨ C
8: else[no new states explored] return φ holds

9: k ← k + 1

10: return counterexample extracted from the satisfying assignment

Experiment Data and Discussion A summary of the experiment data is presented
in Table 1. We kept track of the depth needed to determine whether the property
holds or whether there exists a counterexample. This depth k is the column
“Bound” in Table 1. A smaller bound indicates a faster convergence of the
abstraction.

The results indicate that the CDR model has a higher complexity than the
PDR model. This was expected due to the doubling of design details in the
CDR design data. The results furthermore indicate that the verification by the



Table 1: Summary of verification outcome, needed bound k, verification time and
peak memory consumption for McMillan’s interpolation-based invariant check-
ing (MCM) and the component-oriented interpolation-based invariant checking
(COMP).

Case Technique Outcome Bound Time (sec) Mem (Mb)

PDR-1
MCM counterexample 3 2.42 95.9
COMP counterexample 3 3.52 111.9

PDR-2
MCM counterexample 2 1.77 92.0
COMP counterexample 2 2.28 100.4

CDR-3
MCM counterexample 11 486.06 651.0
COMP counterexample 11 338.56 865.5

CDR-4
MCM holds 4 7.10 125.7
COMP holds 3 7.00 138.0

CDR-5
MCM holds 7 69.20 171.5
COMP holds 3 8.10 137.0

component-oriented interpolation method is competitive. This is in particular
visible for CDR-3 and CDR-5, where the computation time is significantly better.
The reason for this is the needed bound k. A small k appears to suffice for a
quality abstraction. Note that these measures cannot be trivially generalized.
Timings depend heavily on the used SAT-solver, in particular on the heuristics
it employs, the possibly imposed randomness influenced by the order of clauses,
or by the choice of the target system. These factors are inherent to the nature
of current-day SAT-solvers. The numbers should therefore be interpreted as
indications.

While the experiment data indicate a positive influence of component-oriented
interpolation, we suspect that the way it is used in this evaluation suffers from
double abstraction. Observe that in Algorithm 1 two abstraction techniques are
jointly used. The first comes from component-oriented interpolation which is a
possible source of false counterexamples. The second comes from inner reachability
analysis (line 6 of Algorithm 1), which may add further false counterexamples.
Each abstract counterexample of the inner reachability analysis turns the while
condition in line 5 of Algorithm 1 to false, leading to an unnecessary increase of k.
An exact, rather than an approximative, inner reachability would resolve this. We
are however not aware of any exact unbounded SAT-based reachability techniques.
BDD-based techniques might work, but we suspect that the repeated conversion
from SAT-based data structures to BDDs would add too much overhead to be
competitive. Hence, we leave further optimization in this area as future work.

As elaborated in Section 3, there are other applications for the component-
oriented interpolated environment, like manual inspection or partial model reverifi-
cation. Their algorithms look slightly different from Algorithm 1, but the essential
computational steps are there. For manual inspection, the emphasis is on the



2 4 6 8 10

100

1,000

10,000

100,000

6900

1348

620

332

152

94174

14309

5116

1876

568

29014

6544
3905

2612

960

Depth

T
im

e
(m

s)
Component-Oriented Interpolation

Bounded Model Checking

Inner Reachability

Fig. 4: Plots of time spent in milliseconds at each depth k for bounded model
checking, component-oriented interpolation and inner reachability (respectively
lines 2, 3 and 5-8 of Algorithm 1) on experiment configuration CDR-3 (checking
avoidance of safe mode in the presence of various platform failures).

bounded model checking step (line 2) and component-oriented interpolation (line
3). For reverification on the other hand, the emphasis lies on inner reachability
(lines 5-10). To extrapolate the effectiveness of component-oriented interpolation
for those two applications, we logged the time spent on parts of Algorithm 1 at
each step k. A summary is shown in Figure 4 for experiment configuration CDR-3,
which is representative for the other experiment configurations. Note that the
y-axis has a logarithmic scale. The bottom line is that the step for constructing
the interpolated environment has little impact on the overall running time, as
it only takes a fraction of the time spent on bounded model checking and inner
reachability. Note that the (most time-costly) bounded model checking step is
avoided for partial model reverification, whereas inner reachability is omitted for
manual inspection. This is where time is saved for the overall analysis.

5 Related Work

There is a huge body of work on compositional analysis in literature. In the
introduction, Section 1, we have briefly explained the main differences between
our work and what has been reported in literature. We continue this discussion
in this section.

Contrary to many works from the Owicki-Gries paradigm, which often make
distinctions between global and local variables, our work fits the shared variables



paradigm. Global variables are typical to parallel systems, where multiple (iden-
tical) concurrent processes are active at the same time and interact with each
others through a small set of global variables. The technique by [7] essentially
abstracts and redefines the concurrent processes in terms of those global variables
and calls this notion the split invariant. The technique by [13] is similar to that,
as well as the technique by [18]. Our work expresses environments in terms of
those variables that are shared with other components, thus not requiring a
model structure in which global variables are explicitly defined by the user. The
shared variable paradigm is therefore a generalization of the global/local variables
paradigm.

In this work, we show, so far, how the environments are interpolated using
the unsatisfiability proof from bounded model checking of an invariant. This can
be extended to a larger class of properties. Akin to [8], where the notion of a
process environment is described, the interpolated environments, as it currently
is formalized, can also be used to verify safety and liveness properties. In fact, our
notion of the interpolated environment was inspired by that. We however foresee
that the interpolated environment is not strong enough for verifying liveness
properties and that techniques from CEGAR are a necessity here. Particular
techniques in this setting are by [8] and [17]. As these works were carried out for
the global/local variables paradigm, it requires further investigation how these
techniques are extendable to the shared variables paradigm. For the moment,
Algorithm 1 naively increases the bound k as a refinement step without checking
whether an abstract counterexample is a false-positive or not.

With regard to rely/assume guarantee/provide reasoning, we remarked in the
introduction that the automated approaches are closely related to ours. In [14], a
technique based on automata determinization is described to generate weakest
assumptions. In subsequent work [5], assumptions are learned using an automaton
learning algorithm, like L*. Our work is a twist on this, as we describe a method
using Craig interpolation.

Rely/assume guarantee/provide reasoning has also been applied to AADL
models, like for example [6]. The scope and semantic base of [6] differs from ours.
Our satellite models for example are expressed in a formalized dialect of AADL
by [2]. It is designed to provide a rigorous and coherent semantics for a system’s
nominal, erroneous and degraded behavior. The work by [6] appears to focus
only on the nominal behavior. Furthermore, their approach does not generate
assumptions nor guarantuees as we do, but rather provides a tool-supported
reasoning framework over them once provided by the user.

Interpolation in model checking has become an active field since the pioneering
work by [19]. It has been further studied since, covering applications such as
a monolithic abstraction of the transition relation [16], or more theoretical
investigations studying the differences in strength of interpolants as a consequence
of a chosen interpolation generation scheme [10]. We were inspired by [20]
and devised a modified interpolation scheme that is suitable for compositional
reasoning that is reported in this paper.



6 Conclusions

We have described and experimentally evaluated a technique for deriving an
abstract environment transition condition from a component-oriented model
using a Craig interpolation-inspired method. We call it the component-oriented
interpolant. It particularly fits models where highly cohesive components commu-
nicate through shared variables, which is a generalization over the global/local
variables setting. To our knowledge it is the first application of interpolation-like
techniques to exploit a model’s composition of components.

Through our work, we identified several open points for future work. In
particular a study of the component-oriented interpolant’s strength would be
interesting. We know from Lemma 1 that the component-oriented interpolant
over-approximates, but we do not know how strong it is such that the property still
holds up to bound k. This is in contrast to classical Craig interpolation, where its
interpolant does have this property. It requires further study to understand how
and whether the component-oriented interpolant can be strengthened. Inspiration
can be drawn from the strengthening techniques for classical interpolation, where
the reordering of vertices in the resolution refutation proof and asymmetric
interpolation schemes have been studied for this purpose [10].

Studying the strength of the component-oriented interpolant also benefits
its suitability for verifying more expressive properties, like safety and liveness
properties. We estimate that the component-oriented interpolation scheme of
Definition 2 overapproximates too much for that purpose and thus the straight-
forward usage of the interpolated environment to safety/liveness properties would
yield too many false-positive counterexamples.

Furthermore, we indicated in Section 4 that Algorithm 1 is rudimentary.
It suffers from double abstraction, because it does not perform an exact inner
reachability analysis using the interpolated environment. Exact methods would
alleviate that. Especially ones that work in a SAT-based context are preferable,
because that would avoid the overhead of converting the used data-structures.
This is open for further investigation.

We have made our implementation available on http://www-i2.informatik.

rwth-aachen.de/~nguyen/coi/ under the LGPL open source license.

Acknowledgements This work was partially supported by ESA/ESTEC (contract
no. 4000100798), Thales Alenia Space (contract no. 1520014509/01) and EU
FP7-ICT D-MILS (reference 318772).

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Proc. of Tools and Algorithms for Construction and Analysis of Systems
(TACAS), LNCS, vol. 1384, pp. 193–207. Springer (1999)

2. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
Dependability and Performance Analysis of Extended AADL Models. Computer
Journal 54(5), 754–775 (2011)



3. Buss, S.R.: Propositional Proof Complexity. Computational Logic (1997)
4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Proc. of Computer Aided Verification (CAV), LNCS, vol. 2404,
pp. 359–364. Springer (2002)

5. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Proc. of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS, vol. 2619, pp. 331–346. Springer (2003)

6. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional Verification of Architectural Models. In: Proc. of NASA Formal Methods
Symposium (NFM), LNCS, vol. 7226, pp. 126–140. Springer (2012)

7. Cohen, A., Namjoshi, K.S.: Local Proofs for Global Safety Properties. Formal
Methods in System Design 34(2), 104–125 (2009)

8. Cohen, A., Namjoshi, K.S.: Local Proofs for Linear-Time Properties of Concurrent
Programs. In: Proc. of Computer Aided Verification (CAV), LNCS, vol. 5123,
pp. 149–161. Springer (2008)

9. Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

10. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength.
In: Proc. of Verification, Model Checking, and Abstract Interpretation (VMCAI),
LNCS, vol. 5944, pp. 129–145. Springer (2010)

11. Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
Correctness, Safety, Dependability and Performance Analysis of a Satellite. In: Proc.
of Software Engineering (ICSE), pp. 1022–1031. IEEE (2012)

12. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

13. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Proc. of Model
Checking Software (SPIN), LNCS, vol. 2648, pp. 213–224. Springer (2003)

14. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption Generation for
Software Component Verification. In: Proc. of Automated Software Engineering
(ASE), pp. 3–12. IEEE (2002)

15. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier
for Multi-Threaded Programs. In: Proc. of Computer Aided Verification (CAV),
LNCS, vol. 6806, pp. 412–417. Springer (2011)

16. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation.
In: Proc. of Computer Aided Verification (CAV), LNCS, vol. 3576, pp. 39–51.
Springer (2005)

17. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-Modular Counterexample Guided
Abstraction Refinement. In: Proc. of Static Analysis (SAS), LNCS, vol. 6337,
pp. 356–372. Springer (2010)

18. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular Verification is Cartesian
Abstract Interpretation. In: Proc. of Theoretical Aspects of Computing (ICTAC),
LNCS, vol. 4281, pp. 183–197. Springer (2006)

19. McMillan, K.: Interpolation and SAT-Based Model Checking. In: Proc. of Computer
Aided Verification (CAV), LNCS, vol. 2725, pp. 1–13. Springer (2003)

20. McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In: Proc.
of Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS, vol. 3440, pp. 1–12. Springer (2005)

21. Nguyen, V.Y. “Trustworthy Spacecraft Design Using Formal Methods”. PhD thesis.
RWTH Aachen University, Germany, 2012


