Hydraid Biosand Water Filter – Proven Technology to Address the Global Water Crisis

According to United Nations reports, 4 billion cases of diarrhea occur each year in addition to millions of other cases of illness associated with lack of access to water that is safe for human consumption. In 2008, the World Health Organization (WHO) estimated that more than 2.2 million deaths of children per year could be prevented by reducing the diarrheal and malnutrition impacts related to unsafe water, inadequate sanitation or insufficient hygiene. For children under 15, this burden is greater than the combined impact of HIV/AIDS, malaria and tuberculosis. The UN report estimates there are nearly 900 million people receiving their water from an unimproved drinking water source. Where there is no improved water or infrastructure for sustainable water sanitization in homes or villages, there are few choices for people living in those conditions but to get their water from the same sources in which animals drink and defecate leading to water related diseases such as diarrhea, dysentery and cholera.

BioSand Technology

One of the world’s most effective, sustainable and proven water purification methods, BioSand filtration technology significantly reduces the leading causes of disease and death in the developing world including diarrhea, skin and urinary tract infections. Through a combination of biological and mechanical processes, BioSand filtration makes unsafe water safe for family use. Users reduce contaminations using gravity alone by simply pouring surface or ground water through the filter to obtain water that is safe for drinking, food preparation, personal hygiene and sanitation. A typical system can treat up to 20 liters of water in about 30 minutes.

The technology is based on centuries old slow sand filtration technology and grew out of work conducted in Nicaragua in the early 1990’s by Dr. David Manz of the University Of Calgary, Alberta, Canada and a leading water expert. It is estimated there are more than 400,000 BioSand filters in more than 70 countries in Africa, Europe, Asia, North, Central and South America, the Caribbean and the South Pacific. Many of these BioSand filters are constructed of concrete requiring a mold and are generally constructed on site using local labor. Concrete filters are prone to breakage and production consistency issues. Capacity for cement production is generally one to two filters per day per mold, whereas plastic production is upwards of 980 filters per day per mold. The BioSand water filter technology has been extensively tested in laboratories at the University of North Carolina, University of Calgary, and elsewhere. The filters have consistently proven to be effective, reliable, and affordable. Health impact studies show improved quality with a 95% reduction of E. coli and 44% reduction in diarrheal disease.

Based on several factors such as: sustainability, water quantity produced, ability to treat a range of water qualities, ease of operation, time to treat, cost per liter, and supply chain requirements Hydraid® BioSand Filter technology

1 UN Progress on Sanitation and Drinking-Water: 2010 Update
2 http://www.manzwaterinfo.ca/fieldrpt.htm (1/6/2011)
3 http://www.manzwaterinfo.ca/ (1/6/2011)
4 Health Impact Study in Cambodia, 2007, Liang, K, Sosey, MD University of North Carolina
ranked best overall technology for the developing world by industry expert, Mark Sobsey of University of North Carolina.\(^5\)

<table>
<thead>
<tr>
<th>TABLE 3. Scoring of POU Treatment Technologies Based on Sustainability Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Free Chlorine</td>
</tr>
<tr>
<td>Coagulation/Chlorination</td>
</tr>
<tr>
<td>SODIS</td>
</tr>
<tr>
<td>Ceramic Filters</td>
</tr>
<tr>
<td>Biosand Filters</td>
</tr>
</tbody>
</table>

Hydraid® BioSand Water Filter

The Triple Quest Hydraid® BioSand Water Filter is the same BioSand filtration technology developed by Dr. David Manz with a plastic vessel instead of a concrete one. This technology is dramatically more portable, scalable and low-cost compared to traditional concrete filters — a critical factor in scaling a project for rural and remote areas of the world. The Hydraid® filter incorporates the BioSand filter technology into a specially engineered plastic filter, making the unit easier to transport and distribute in the difficult terrain of the world’s most remote locations. The medical-grade plastic is FDA approved for drinking water, UV resistant and estimated to last beyond 10 years. There are estimated to be more than 50,000 plastic Hydraid® BioSand water filters in the field in a large variety of countries.\(^6\)

- Height - .77m (30.5"), diameter - .42m (16.5")
- Weight: Empty - 3.6kg (8 lbs.), Filled – 63.5kg (140 lbs.)
- No moving parts or parts to replace
- Intended Use: Point-of-use in homes
- Easy Installation: about 30 minutes (level and fill with sand)
- Power Source: Gravity (no electricity or plumbing required)
- Convenient: Operates on demand
- Filtering Capacity: 47 liters/hour
- Serves the needs of 8-10 people daily.
- Prep Time: Surface biological layer forms naturally in about 2 weeks
- Low Maintenance: cleaned in place by user, instructions provided

Alternative Technologies

Household water treatment options for rural villages without electricity and piped water range from boiling, sedimentation, combined coagulant-chlorine disinfection systems, SODIS-transparent polyethylene terephthalene (PET or PETE) bottles exposed to solar UV and heat, ceramic filters and BioSand filters. Other manufactures have introduced hollow fiber membrane filters, i.e. Sawyer filters, i.e. Tatas Swatch. Competitive BioSand filters assembled from local plastic vessels, PVC pipe, sand and gravel may have inconsistent performance. Furthermore, many of these products lack independent scientifically sound lab and field studies documenting their ability to

\(^5\) Environ. Sci. Tehcnol. 2008, 42, 4261-4267
\(^6\) Jim Gingrich, Business Unit Leader for Commercial Operations, Cascade Engineering, Inc.
improve water quality and reduce waterborne infectious disease in real world conditions. Accurate independent studies are available for the following technologies.

TABLE 2. Diarrheal Disease Reduction by POU Technologies in Controlled Studies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Diarrheal disease reduction estimate (95% CI)*</th>
<th>Compliance (estimates of self-reported and/or measured % user compliance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODIS (solar UV radiation + thermal effects)</td>
<td>31% (26%-37%)</td>
<td>78% compliance during study (24); however, post study compliance rates may drop as low as 9% (25)</td>
</tr>
<tr>
<td>Free chlorine and safe storage</td>
<td>37% (25%-48%)</td>
<td>60-73% of households were self-reported users, but only approximately 30-40% of those who reported use had detectable free chlorine levels (27-29) usage rates may drop to as low as 10% after intervention ends (30)</td>
</tr>
<tr>
<td>Coagulation/chlorination, i.e. Water Maker, PuR</td>
<td>31% (18%-42%)</td>
<td>High until filter breaks; in a trial in Bolivia, compliance was 885 over 6 months (3) dependent on filter breakage rates, (10)</td>
</tr>
<tr>
<td>Ceramic filtration through candle filters</td>
<td>63% (51%-72%)</td>
<td>High until filter breaks; in a trial in Bolivia, compliance was 885 over 6 months (3)</td>
</tr>
<tr>
<td>Ceramic filtration through ceramic water purifiers</td>
<td>46% (29%-59%)</td>
<td>85% post-implementation (33, 34)</td>
</tr>
<tr>
<td>BioSand filtration</td>
<td>47% (21%-64%)</td>
<td>85% post-implementation (33, 34)</td>
</tr>
</tbody>
</table>

* * Summary estimates stratified by type of intervention (from a meta-analysis of drinking water quality interventions and diarrheal disease reductions. Summary estimate from meta-analysis on POU chlorination (includes both free chlorine disinfection and combined coagulation-disinfection).

Multiple Health Impact Studies

Health impact studies have long been used to judge the health impact of various technologies and investments in water, sanitation and hygiene interventions. Independent and scientifically sound studies generally are accepted as an evaluation tool in the context of understanding the interconnected necessity of water, sanitation and hygiene for health and development. Two health impact studies have been performed and published on the BioSand Filter technology in concrete. In 2008, 3 health impact studies were performed specifically on the plastic Hydraid® BioSand Water Filter with 81 filters installed in Cambodian households, 89 in Honduran households and 115 in

7 Environ. Sci. Tehcnol. 2008, 42, 4261-4267
Ghanaian households showed the following results for E coli reduction. Results have been published in abstracts and all three health impact studies are currently in the peer review process.

<table>
<thead>
<tr>
<th>Location</th>
<th># of plastic BSFs installed</th>
<th>Date of installation</th>
<th>Geometric mean reduction E. coli direct from BSF outlet (N)*</th>
<th>Geometric mean reduction E. coli from BSF stored and treated (N)+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambodia</td>
<td>81</td>
<td>7/2008</td>
<td>92% (533)</td>
<td>89% (503)</td>
</tr>
<tr>
<td>Ghana</td>
<td>115</td>
<td>9/2008</td>
<td>97% (401)</td>
<td>85% (398)</td>
</tr>
<tr>
<td>Honduras</td>
<td>89</td>
<td>8/2008</td>
<td>62% (738)</td>
<td>46% (729)</td>
</tr>
</tbody>
</table>

Health impact studies in and of themselves and especially when presented outside the context of the necessity of sanitation and hygiene are not universally accepted. This may be the case when the studies are commissioned by the product founders or when the studies measure only diarrhea illness and not other water related measurable outcomes. Other contributing factors are individuals have different infectious dose thresholds, water related pathogens have different infectious doses and there are multiple contamination pathways for pathogens other than water.

Conclusion

The World Health Organization recommends household water treatment as an effective and affordable solution to waterborne disease. The Hydraid® BioSand Water Filter is founded on proven technology, is simple, lightweight household point of use filter powered by gravity. The Hydraid® filter is extremely durable, has no parts to replace and last beyond 10 years making it the most sustainable filter available today that reduces parasites, bacteria and viruses found in contaminated water. The filter is improving the health and lives of families using it, as a part of an overall program of hygiene and sanitation. Working together with many different organizations, each with their own approach and sphere of influence can bring filters to families, save lives and lift people out of poverty.

Triple Quest

Triple Quest is one of the Cascade Engineering Family of Companies. Cascade Engineering is a multi-business manufacturer and marketer with over 30 years experience and expertise in large part injection molding to the automotive, solid waste & recycling, furniture, material handling and renewable energy markets. Cascade Engineering focuses on making a positive impact on society, the environment and being financially successful. Triple Quest is a social enterprise business unit focused on sustainable development and enterprise. Triple Quest holds the only U.S. license to manufacture and market the commercial version of the patented Hydraid® BioSand Water Filter technology. Additional information is available at our website www.hydraid.org or by calling 616.254.4114.

8 Field performance of the plastic biosand filter in Cambodia, Ghana and Honduras. C.E. Stauber, E. Printy, A.m. Fabiszewski, C.C. Kominik, A.R. Walters, K.R. Liang, and M.D. Sobsey, Georgia State University, Institute of Public Health, Atlanta, GA 30302, University of North Carolina, Dept. of Environmental Sciences and Engineering, Chapel Hill, NC
Other Studies

See Appendix A for a listing of additional studies that have been performed on the BioSand filter technology.
Appendix A

3. Stauber, Christine E., Gloria M. Ortiz, Dana P. Loomis and Mark D. Sobsey. “A Randomized Controlled Trial of the Concrete Biosand Filter and Its Impact on Diarrheal Disease in Bonao, Dominical Republic.” American Journal of Tropical Medicine Hygiene 80(2), 2009, pp 286-293

Abstracts and Posters

10. Fabiszewski, Anna M., Christine E. Stauber, Adam R. Walters, Rony E. Meza Sanchez and Mark D. Sobsey. “A Randomized Controlled Trial of the Plastic-Housing BioSand Filter and its Impact on Diarrheal Disease in Copan, Honduras.” 2011 DRAFT

13. MacDonald, Laura, Bill Ball, Erica Schoenberger. “Aid Efficacy for Point-of-Use Water Treatment: Following Interventions from Origin through Implementation to Evaluation.” Johns Hopkins University

Health Impact Studies

Other Research

21. Manz, P. Eng., Dr. David H. “BSF Community Scale Drinking Water Supply Station V 1.0 Using Concrete Ring and Base Construction.” July 17, 2005

22. Manz, P. Eng., Dr. David H. “BSF Community Scale Drinking Water Supply Station V 1.0 Using Concrete Ring and Base Construction.” July 22, 2005

24. BioSand Water Filter Removal, Treatment Capabilities and Specific Accreditation and Regulatory Approvals

26. Aiken, Benjamin A. “Sustainability Assessment of the Biosand Filter in Bonao, Dominican Republic.” A technical report submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Masters in Public Health in the Department of Environmental Sciences and Engineering, Chapel Hill 2008

28. Stauber, Christine E. “The Microbiological and Health Impact of the Biosand Filter in the Dominican Republic: A Randomized Controlled Trial in Bonao.” A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering, Chapel Hill 2007

Evaluations

International Certified Lab Results
33. Certified Lab Results commissioned by Mr. Vinod Ready. “Care Labs - AP Government Registered No. 2461/05” Erramanjil, Hyderabad, India. October 29, 2010.

World Health Organization