

Composit ion with Guarantees for High -integrity

Embedded Software Components Assembly

Project Partners: Aicas, Atego, Atos Origin, CNRI-ISTI, Enea, Ericsson, Fraunhofer, FZI, GMV Aerospace

& Defence, INRIA, Intecs, Italcertifer, Maelardalens University, Thales Alenia Space,

Thales Communications, The Open Group, University of Padova , University Polytechnic

of Madrid

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

Partners accept no liability for any error or omission in the same.

© 2009 Copyright in this document remains vested in the CHESS Project Partners.

Project Number 216682

D4.3 – Predictability property-preservation needs

Version 1.1

26 January 2011

Final

Public Distribution

UPD, UPM, FhG, Atego, Aicas, MDH, TCF, ENEA

D4.3 – Predictability property-preservation needs

Page ii Version 1.1 26 January 2011

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Table of contents according to comments from Brussels meeting 19

May 2010

25 May 2010

0.2 Initial contents for scheduling analysis from UPD and UPM 25 July 2010

0.3 General modifications 31 August 2010

0.5 Initial contents for simulation analysis from FhG 5 November 2010

0.6 Some modification of UPM in section 3 30 November 2010

0.7 Introduced table of requirements in appendix 21 December 2010

0.8 End-to-end review of document (UPD) 22 December 2010

0.9 Removal of redundancies in the specification of the Ravenscar profile 23 December 2010

1.0 Version before internal review, properties for Linux 20 January 2011

1.1 Modifications after review 26 January 2011

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page iii

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction .. 5

1.1 Description of the Problem ... 5

1.2 Some Examples of Run-Time Semantic Inconsistency .. 7
1.2.1 Parameter direction and concurrent semantics .. 7
1.2.2 List of consistency requirements for the Ravenscar Computational Model .. 8

2. General solutions to ensure consistency between models and execution platforms .. 9

2.1 Model specification of mappings from analysis patterns to run-time patterns ... 9
2.1.1 Model specification of mappings from schedulability analysis to violation events 9
2.1.2 Model Assumptions of Deployment Determination Analysis .. 10
2.1.3 Assumptions about simulation analysis to run-time patterns .. 11

2.2 Definition of violation events to preserve run-time consistency with the analysis .. 12
2.2.1 Scheduling Analysis: Thread management, synchronization and communication 12
2.2.2 Scheduling Analysis: Time management .. 14
2.2.3 Scheduling Analysis: Interrupt management .. 14
2.2.4 Simulation Analysis: Violations of User Model Assumptions ... 14
2.2.5 Memory management ... 15

3. Multiplatform consistency specifications .. 15

3.1 Scheduling ... 15

4. Platform specific consistency specifications ... 16

4.1 Ada Ravenscar Profile/LwCCM Platform .. 16
4.1.1 Task management, synchronization and communication.. 16
4.1.2 Time management ... 17
4.1.3 Interrupt management ... 18
4.1.4 Memory management ... 18

4.2 Linux/OSE Platform .. 18
4.2.1 Linux ... 18
4.2.2 OSE ... 19

4.3 RTSJ Platform ... 22
4.3.1 Task management, synchronization and communication.. 22
4.3.2 Time management ... 24
4.3.3 Interrupt management ... 24
4.3.4 Memory management ... 24

5. References .. 25

APPENDIX A. Requirements on platforms for the consistency of analysis methods ... 29

FIGURES

Figure 1-1: CHESS tool chain .. 5

D4.3 – Predictability property-preservation needs

Page iv Version 1.1 26 January 2011

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This report introduces solutions adopted in CHESS to make consistent analysis models

and execution platforms properties. The objective of this report is to make as much

consistent as possible the results of analysis and their equivalent run-time execution

temporal properties.

Different analysis methods assume some properties of execution platforms; this

deliverable includes these assumptions and some solutions to make analysis and

execution consistent. Specific platforms can address the assumptions with different

solutions. The analysis methods try to be as much platform independent as possible, but

their application in specific platform requires some specific customizations and can

have particular restrictions.

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 5

Confidentiality: Public Distribution

1. INTRODUCTION

In the CHESS tool chain several modelling tools and artefacts handle the same

information base for different purposes. It is important however that this information be

handled and interpreted with the same semantics. Figure 1-1 shows a bird’s eye

overview of the CHESS tool chain. This deliverable addresses the issue of how to

ensure the consistency of the forward and backward transformations to be made from

CHESS ML to analysis tools, from implementation languages and platforms to CHESS

ML, and the generators from CHESS ML to implementation languages. Code

generators, transformers to analysis and code analyzers and transformers to CHESS

ML, and execution platforms must be all semantically consistent, for each analysis

method.

Analysis methods are designed and implemented to handle specialized problems, and to

be applicable in practice they make specific assumptions and impose restrictions and

limitations. This deliverable discusses the limitations imposed by analysis languages

and tools on generators and platforms in order to make the analysis applicable and

trustworthy its results. The analysis methods assume some restrictions on the static and

dynamic nature of programs; these restrictions are discussed in this deliverable, to

enhance the execution platforms if and where needed to comply with the suite of

analysis used in CHESS and to make the code generators preserve the form required of

their source code products.

Figure 1-1: CHESS tool chain

1.1 DESCRIPTION OF THE PROBLEM

The four key technical ingredients of the development approach adopted in the CHESS

project are: (i) a component model, to design reusable software components; (ii) the

computational model, which describes the allowable semantics and the necessary

D4.3 – Predictability property-preservation needs

Page 6 Version 1.1 26 January 2011

Confidentiality: Public Distribution

constraints to develop analyzable software entities and relates the design entities and

their attributes to a set of analysis equations of the underlying analysis body of

knowledge; (iii) a programming model, as a tailored subset of a chosen set of

implementation language which, together with a set of code archetypes, is able to

express in the implementation solely and exactly the execution semantics assumed by

the analysis theory and to convey in the implementation the realization of the extra-

functional attributes used as input for the analysis; and (iv) a conforming execution

platform, which is in charge of warranting the properties that were asserted by analyze

and cope with run-time violations w.r.t. non-functional concerns.

The component model is defined and implemented in WP2. The computational

model(s) is/are defined in WP4 in conjunction with the selection of the analysis theory

and techniques to be used in the predictability dimension. The programming model(s)

and the execution platform(s), which may vary with the industrial domain addressed by

the project, are specified and supported in WP5.

The component model we are developing in CHESS is agnostic on the underlying

computational model. To this end we strive to maintain the component model void of

predefined semantics for what concerns the extra-functional aspects. While the

component model of course is equipped with the syntactic means to specify all the

extra-functional attributes of interest, only at the point of binding to the computational

model of choice those attributes taken a given semantics which fits exactly the space

allowed by the chosen analysis theory in the extra-functional dimension of interest.

When the computational model of choice is selected, the software model must then fully

abide by all the semantic assumptions and constraints entailed by it. The choice of the

computational model must obviously also precede the analysis of the model and thus the

automated generation of the Schedulability Analysis Model (SAM) which is input to the

analysis engine.

The following three issues must be carefully addressed to make sure that the above

vision and notions hold:

1. The model transformation from PIM to PSM in general and to the SAM in

particular;

2. The transformation from PSM to system implementation in terms of source code

and bindings to the middleware;

3. The execution platform.

As regards issue 1, we must make provably sure that the exercised transformations

should not generate PSM/SAM model elements or assemblies that conflict with the

semantics allowed by the computational model of choice.

As regards issue 2, the transformation to source code and middleware bindings must

conform to the programming model of choice and shall not introduce language

constructs and calls that break the semantics assumed and allowed by the analysis

theory in use. Moreover, the model-to-code transformations shall create, possibly by use

of predefined and proven code archetypes: (i) code structures that support the static

enforcement of timing properties; (ii) code structures that permit the monitoring of

properties whose enforcement can only be made at execution time.

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 7

Confidentiality: Public Distribution

At the time of this writing, the only computational model that has clearly shown to fit

the CHESS needs and vision is the Ravenscar Computational Model (RCM) [54, 55]. In

the following section we illustrate some examples of semantics imposed by the RCM

and situations in which that semantics is violated.

1.2 SOME EXAMPLES OF RUN-TIME SEMANTIC INCONSISTENCY

1.2.1 Parameter direction and concurrent semantics

Operations declared in provided and required interfaces have a signature that specifies

the operation name and an ordered list of parameters and exceptions. Each parameter is

typed with a data type whose definition must be accessible to the caller, and has a

parameter direction. The value for parameters direction can be “in” (the actual

parameter is only read inside the operation), “out” (the actual parameter is only written

inside the operation and the last value written to it is kept at the end of the operation), or

“in out” (the actual parameter is both read and written in the scope of the operation and

the last value is kept at the end of the operation; or, in the variant known as “value-

return”, the actual parameter is read in the scope of the operation and updated on return

from it).

An example of an operation can be:

operationName(in Integer p, out Float z)

Later in the design process, interfaces are used to type the provided interfaces (PI) and

required interfaces (RI) of component types and are reported in the derived component

implementations and then instances.

At instance level, the representation of operations in PI is decorated with attributes that

declare the intended concurrent semantics. In our case of interest, we will elaborate on

operations with out or in out parameters which are declared as sporadic operations.

A sporadic operation is executed by a dedicated thread of control and there is a

guaranteed separation between two subsequent executions of it, called minimum inter-

arrival time (MIAT).

Suppose then that we want to target RCM from the CHESS component model and thus

generate RCM-compliant entities for the schedulability analysis model and then at

implementation.

In RCM an operation with exclusively in parameters would be rendered as a composite

structure comprised of a thread and a protected buffer. Clients calling the operation

would post a request to the designated interface. That request would be reified into an

object and posted in the protected buffer. The thread would then be enqueued on a

private entry to that buffer. When the buffer is empty, the thread would block. On a

non-empty buffer, the thread would fetch the execution request at the logical top of the

buffer, according to the queuing policy selected for the buffer, then unfold the

invocation object and execute the requested operation. If the thread was marked

sporadic, the buffer status becoming not-empty would represent the single source of

activation events for the thread and the thread structure would take measures to enforce

the MIAT specified for the sporadic operation.

D4.3 – Predictability property-preservation needs

Page 8 Version 1.1 26 January 2011

Confidentiality: Public Distribution

As it is evident, the RCM has a specific and arguably straightforward way of realizing

the sporadic semantics of the operation. Another computational model, like that

underlying a cyclic executive, would need a radically different way of expressing the

event-based sporadic semantics; in the above example, the differences would be needed

to reconcile it with the static nature of the time-triggered schedule.

RCM allows us to map an operation with exclusively in parameters and sporadic nature

on a “sporadic task”. In CHESS the actual task implementation would reside in the

container-connector level, underneath the PSM.

If the designer specified an operation with out or in out parameters and wanted to assign

a sporadic nature to it, that specification could not be mapped directly to RCM.

That specification would in fact imply that the thread of control of the caller should

block, waiting for the completion of the sporadic operation as performed by the thread

on the callee side. At tasking level, this would imply a rendezvous (synchronization)

between the thread of the caller and the thread of the callee. The fact is, however, that

task synchronization cannot be treated by schedulability analysis and it is thus forbidden

in RCM. The only way to realize out or in out semantics would be to create an assembly

of RCM-compliant entities that engage in a collaborative call-back pattern that is

proven to be analyzable. The definition and implementation of patterns of this kind falls

within the charter of WP5 in strict collaboration with WP4, following on from an in-

depth analysis of the user requirements and the run-time semantics allowed by the

computational models of interest to the industrial users in CHESS. Such patterns would

be used first in the PIM to PSM transformations, in order that the implementation model

considered for static analysis captures the user requirements and also complies by

construction with the restrictions and assumptions stipulated for the analysis. The code

level correspondents of those patterns would then be used in the PSM to code

transformations in a manner that not only preserves the required semantic compliance

but also actively enforces it at run time, if and where necessary. When RCM is chosen

as the computational model for the PSM, the component model which underpins the

PIM shall be informed of all the constraints in place to ensure the consistency of the

target model and the design environment shall enforce them, possibly on the fly.

1.2.2 List of consistency requirements for the Ravenscar Computational Model

Rule Application

level

Kind of application

A sporadic operation is mapped to a thread of

control and requires a request buffer protected

from mutual exclusion with the immediate

ceiling protocol. A blocking operation of the

buffer is the single point of suspension for the

task. Client of the sporadic operation are simply

posting their sporadic request in the protected

buffer.

PIM=>SAM

and PSM=>

source code

Static transformation

A protected operation is mapped to a shared

resource protected with the immediate ceiling

protocol.

PIM=> SAM

and PSM=>

source code

Static transformation

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 9

Confidentiality: Public Distribution

Interactions with a sporadic operation as

destination imply an access to the protected

resource of the sporadic task

PIM => SAM

and PSM =>

source code

Static transformation

An operation with at least one parameter cannot

have a cyclic activation pattern

Editor On-the-fly

An operation with at least one out or in out

parameter cannot have a sporadic activation

pattern

Editor On-the-fly

2. GENERAL SOLUTIONS TO ENSURE CONSISTENCY BETWEEN MODELS AND

EXECUTION PLATFORMS

2.1 MODEL SPECIFICATION OF MAPPINGS FROM ANALYSIS PATTERNS TO RUN-TIME

PATTERNS

This approach specifies some mapping from both target languages to maintain

consistent both transformations, and the analysis and run-time models.

2.1.1 Model specification of mappings from schedulability analysis to violation events

The platform must be suitable for static schedulability analysis. To meet this goal, the

adopted computational model should follow the Ravenscar profile. The Ravenscar

profile is an industry standard that establishes a set of restrictions to the Ada

concurrency model, but can be implemented in other concurrent languages and real-

time kernels. The most important restrictions and assumptions include:

 A single processor.

 A statically defined number of threads.

 A single activation event for each thread. The activation event may be generated

by the passing of time (for time-triggered threads) or by a signal from either

another thread or the environment (for sporadic threads).

 Thread interaction only by means of shared data protected with mutual exclusion

locks.

This set of restrictions makes it possible to build systems that include the following kind

of PSM components:

 Periodic threads.

 Sporadic threads activated by software level events.

 Sporadic threads activated by hardware level events.

 Protected objects implementing shared data.

D4.3 – Predictability property-preservation needs

Page 10 Version 1.1 26 January 2011

Confidentiality: Public Distribution

 Protected objects used for delivering the activation event to sporadic threads

(with just one entry private to the sporadic thread).

These components have been proved in previous projects and industrial development to

be expressive enough for implementing high integrity systems for critical applications

on a single processor.

In order to preserve the schedulability of the software – if that was asserted by prior

analysis, the execution platform must check at run time:

 Deadlines: Each thread must complete its work following a single activation

before a given time, i.e., its deadline. The system must be able to detect when a

thread overruns its deadline. This control can be achieved, for instance, by

means of real-time (interval) timers (watchdogs). If a deadline miss occurs, an

event must be raised and some system-level manager must perform some

activity for the investigation of the root causes, followed by corrective actions if

feasible.

 Worst Case Execution Time (WCET): all threads that have passed static

schedulability analysis have declared a worst-case duration for their longest

possible activation. The WCET value can be determined by either static timing

analysis on the thread’s code or by measurement-based observation of actual

executions on the designated target. The WCET value is the time the thread

would take to complete its longest activation without suffering any interference

from the outside. The WCET value consequently represents a bound on the

execution time of the thread. The platform must therefore be able to detect when

the run-time execution of a thread exceeds its WCET bound. If a violation

occurs, the platform must raise an event and some system-level manager shall

contain the effects of the timing fault (for example, by preventing further

execution of the offending thread).

 The platform must provide mechanisms to detect, at run time, user-defined

storage pool overflows. In this case, an exception must be raised.

2.1.2 Model Assumptions of Deployment Determination Analysis

The deployment determination analysis consists of three different steps:

1. Mapping configuration

2. Determination of scheduling priorities

3. Configuration of FlexRay bus systems

The analysis is based on SystemC properties and semantics. In SystemC SC_MODULs

can be hierarchically nested. Modules can have ports and attributes. Ports can provide

and require interfaces. The implementation of functionality can be realized by

SC_METHODs or SC_THREADs. The interaction patters are SystemC blocking and

non-blocking calls, events and channels (equivalent to connectors) for outside modules.

The determination of mapping configurations aims to achieve not an optimal but

suitable initial mapping configuration. The constraint of interest for this analysis are the

maximum resource usage for computational and the communication infrastructure. To

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 11

Confidentiality: Public Distribution

handle complex multi-node systems the analysis does not determine exact bounds for

the constraints but tries to estimate good results that are as close as possible to the

reality. Therefore there are some points of interest for the execution environment.

The execution platform can validate the determined resource usage bounds in term of

utilization of computational hardware and communication infrastructure.

For the analysis, all processes must be statically known. The analysis extracts

information from given implementations or from the CHESS model and needs to know

the number of instances to estimate the resource utilization.

The button-up approach requires the predefined specification of input data in order to

enable the profiling approach that enhances the results of the analysis.

The analysis assumes that every process is activated periodically or sporadically. For

sporadic activation the minimum inter-arrival time must be specified.

It is forbidden to implement recursive function calls hierarchies because this is not

analyzable by the bottom-up approach at the moment.

It is planned to use the described schedulability analysis for the validation of the

determined priorities. Therefore Section 2.1.1 is the reference for this part of the

analysis.

The execution environment can check if the calculated bus transfer latencies from the

third step of the analysis are held by the system.

2.1.3 Assumptions about simulation analysis to run-time patterns

To perform the timing analysis based on a simulation approach, certain assumptions

about the underlying platform are made. The simulation framework is built around the

AUTOSAR model which implies certain restrictions. These restrictions must be obvious

valid, even if the analyzed model depends on an AUTOSAR environment, which is

executed on top of the Linux operating system.

Compared with other analysis methods the simulation-based analysis requires much less

rigor. This allows a timing analysis during early stages of the development process and

a continuous refinement along the development process. For example, in an early

development stage the execution time of a component can be roughly estimated by an

expert, further refined and finally estimated on an instruction set simulator before

deployed to physical hardware. The following restrictions apply to the simulation-based

analysis approach:

 Simulated ECUs only contain a single processor.

 Threads are statically allocated and initialized at system start up.

 Scheduling is restricted to fixed priority pre-emptive and EDF. The latter is a

non standard AUTOSAR extension.

 Threads are periodic or sporadic.

D4.3 – Predictability property-preservation needs

Page 12 Version 1.1 26 January 2011

Confidentiality: Public Distribution

 Communication is restricted to automotive networks like CAN, FlexRay and

MOST or a generic communication infrastructure.

 No shared data and no synchronization mechanisms between threads on a single

ECU.

The simulation framework is build around the AUTOSAR specification making it well

suited for the automotive domain as AUTOSAR is there the predominant environment.

2.1.3.1 Restrictions for Thread Management

The target platform is AUTOSAR which runs on top of a Linux system. The

AUTOSAR services (threads, etc) are mapped to Linux equivalents. The AUTOSAR

environment is under observation of the Linux system to maintain the following

assumptions:

 Static thread creation and initialization phase only during application start up.

 The threads must not terminate.

 The threads have a static priority, which remains unchanged.

 Scheduling follows a FIFO-within-priority or round robin policy.

In general, the restrictions and assumptions defined by AUTOSAR and OSEK/VDX

apply to the execution model.

2.1.3.2 Assumptions regarding hardware

Regarding the hardware some assumptions are made during simulation. The obvious

one is related to the execution time of software components. If the user models an

execution time, it depends on a certain underlying hardware which executes the

program code. It is not possible to provide some upper bounds on single instructions

and catch violations of these during runtime. These violations can only be detected due

to exceeded deadline specified by the user (see: User defined assumptions).

The same also holds for network communications. There are assumptions about

network latency which occur in CAN, FlexRay or MOST networks depending on the

arbitration mechanisms and priorities. Typically it is not possible to validate these

assumptions during run-time because the network internals are not exposed to the host

due to communication transparency.

As a conclusion it can be said that assumptions about hardware can’t be validated

directly during runtime. However violated hardware assumption can appear as a

violation of user defined assumptions.

2.2 DEFINITION OF VIOLATION EVENTS TO PRESERVE RUN-TIME CONSISTENCY

WITH THE ANALYSIS

2.2.1 Scheduling Analysis: Thread management, synchronization and communication

Threads are an essential component of a real time platform. Platform thread’s

management must be simple, predictable and efficient. These characteristics permits a

statically analyzable implementation of the platform, both in temporal as in resources

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 13

Confidentiality: Public Distribution

consumption. Furthermore, embedded real time restrictions must be considered, e.g.

little memory availability as well as limited CPU performance. Nevertheless, the

platform must comply with the Ravenscar profile restrictions:

 All threads must have be created at system initialization. The dynamic creation

of threads should be prohibited and disabled by the system. This restriction

matches the assumption of classical schedulability analysis; otherwise the

analysis becomes too pessimistic to be useful.

 Threads must not terminate. This is symmetric with the restriction that threads

are statically created. Threads may and do suspend during their lifetime, but they

are not allowed to end. This is because schedulability analysis must be

performed against the worst-case contention from a known thread set: this would

be difficult to determine if threads could come and go out of existence at will.

 Hierarchical (nested) threads are forbidden because their presence and the time

overheads of their creation and activation complicate schedulability analysis

very much.

 Communication in a Ravenscar system is restricted to data-oriented

communication only. Entry on threads is disallowed; a single entry on each

protected object is allowed, provided that only a single thread can enqueue on it.

This restriction improves the temporal determinism of the system, permits to

determine the worst-case time at which the enqueued thread may be serviced,

and simplifies the kernel implementation as well as its efficiency.

 The system must enable the specification of the maximum amount of stack

memory that a thread can use. Dynamic memory allocation is forbidden after

system initialization. Only scoped or pool based memory allocation are allowed.

The use of the general (unbounded) memory pool for dynamic storage allocation

is forbidden because its management is not temporally deterministic (it is an NP-

problem) and has very high execution time cost.

 Threads must be scheduled with static priorities with a FIFO-within-priority

regime. The priority of a thread must not change at run time except for the

bounding of priority inversion situations, by use of the immediate ceiling

priority protocol. The use of this protocol complies with the Ravenscar profile

restrictions and significantly simplifies schedulability analysis. Additionally, it

is efficient and simple to implement.

 Thread synchronization must be done through simple algorithms as, for instance,

condition variables. The goal of this requirement is to achieve a simple kernel

with the least possible overhead and, at the same time, to not introduce

temporally non-deterministic operations.

 The platform must support absolute delays. This provides a bounded-drift

mechanism for threads to suspend. This requirement is crucial to enable the

detection and treatment of WCET and deadlines overruns. Also, absolute delays

are essential to build periodic and sporadic activities (i.e. with a minimum inter-

arrival time between the releases of subsequent activities).

D4.3 – Predictability property-preservation needs

Page 14 Version 1.1 26 January 2011

Confidentiality: Public Distribution

 The system must support compile-time detection of potentially blocking

operations. This feature considerably increases the temporal determinism of the

software and simplifies temporal analysis.

2.2.2 Scheduling Analysis: Time management

Time management is essential in real-time systems. The platform must therefore

support at least:

 Time-zone independent, monotonic, absolute clock.

 Temporal granularity as high as possible, so that timers can be accurate and fine-

grained as needed. High-precision timers allow the schedulability analysis to be

much more accurate. The logical tick of the Operating System should therefore

be as close as possible to the period of the physical clock, without this adversely

affecting the performance of the system.

 The overhead due to interrupt management should be as low as possible.

2.2.3 Scheduling Analysis: Interrupt management

Whenever a peripheral needs the intervention of the CPU, it raises an interrupt. An

embedded system may have many peripherals, so that efficient management of

interruptions is a key factor to performance. Moreover, interrupt management should be

temporarily bounded and must allow the use of priorities and, also, partial or complete

inhibition of interrupts.

2.2.4 Simulation Analysis: Violations of User Model Assumptions

The simulation result provides hints as to whether the user requirements concerning

deadlines, activations, etc. can be met by the implementation. The result however

depends on the fact that the assumptions taken are all fulfilled both during system

generation and at run time. Some assumptions are under the control of the developer

while other assumptions are implicit, because of the adoption of AUTOSAR and other

are derived from the underlying hardware (like network latency).

The developer is responsible for providing trustworthy WCET bounds for the software

functions exercised in the system. To assert the consistency between the analyzed model

and the execution platform, the run-time environment must provide means to time

execution per thread and to fire an alarm if the WCET bound stipulated for that thread is

exceeded. The following mechanisms should be provided by the run-time environment

to detect violations of user defined assumptions:

 Execution time measurement of software activities.

 Event activation measurement. Events are periodic, sporadic etc. and are subject

to jitter which is expressed as an assumption during simulation. Any violation of

this prescription (e.g., a sporadic event occurring too often) should be detected

and proactively prevented from occurring.

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 15

Confidentiality: Public Distribution

 Synchronization of events can be modelled, i.e. the occurrence of events within

a time window. The synchronization groups events or signals and measures the

elapsed time between the occurrence of the first and the last event (or signal).

These measurements are usually supported by an integrated timer hardware exploited by

the underlying operating system. However, it should be noted that the timer resolution

should be at the same magnitude as the user specifies his expression in. The timing

mechanism used during simulation allows an almost arbitrary timer resolution (single

cycle) which is usually not available during run-time.

2.2.5 Memory management

 The system must have bounded memory usage. To this end, all the memory to

be used must be allocated in the system initialization. Dynamic allocation from

unbounded storage pool in execution time is forbidden. This is because the

dynamic memory management algorithm is temporarily not deterministic.

Therefore, it is not possible to perform a schedulability analysis on applications

that use this type of memory.

 The system must support volatile memory access, i.e., a method to specify that

the variable in question may suddenly change in value.

 The platform must support atomic memory access. In others words, it must be

able to specify that the code generated must read and write the type or variable

from memory atomically, i.e. as a single/non-interruptible operation. This

requirement is essential to build communication and synchronization’s thread

protocols. An error must be raised if that the platform can’t guarantee an atomic

access to a variable.

 Virtual memory should be avoided. Virtual memory algorithms are NP complete

problems, so bounding response time of memory accesses it not guaranteed.

3. MULTIPLATFORM CONSISTENCY SPECIFICATIONS

This section includes general properties y structure of analysis models generators: i)

General structures of generators, ii) integration in general modelling languages and

transformation languages, iii) round-trip process and integration of results.

3.1 SCHEDULING

In this section we consider three kinds of generators:

1. Scheduling analysis generator: the input of these generators is UML+MARTE

models and the results are MAST models.

2. RTSJ generators: the input of these generators are UML+MARTE models and

the result are Java structures (classes and packages) that reuse the RTSJ library

and executable in Jamaica VM.

3. Ada 2005 generators: the input of these generators are UML+MARTE models

and the results are Ada 2005 structures (tasks, packages and objects), and the

Ravenscar profile in particular.

D4.3 – Predictability property-preservation needs

Page 16 Version 1.1 26 January 2011

Confidentiality: Public Distribution

Results for scheduling analysis must be applicable to executable programs generated

with generators introduced in 2 and 3. Ada 2005 Ravenscar and RTSJ are designed for

the same purposes, and both specifications are designed to make scheduling analysis

before programs execution to ensure response times. But each platform has particular

properties. Examples include:

 Memory management. Ada 2005 Ravenscar excludes dynamic memory

allocation. The equivalent approach in RTSJ is allocation of objects in immortal

memory, but this kind of restriction would make impossible to reuse multiple

library and design patterns. Alternative solutions are scoped memories, but they

must be used making consistent scheduling analysis.

 Time exceptions. RTSJ supports specific approaches for handling deadline and

worst-case execution time exceptions. Ravenscar Ada places important

limitations on execution handlers, and the MARTE profile does not include any

explicit notation for the description of this kind of handlers, so that the UML

modelling concepts must be used instead.

 Specific design patterns. RTSJ includes specific patterns such as asynchronous

event handlers that do not have a direct equivalent in UML+MARTE or Ada

Ravenscar. These kinds of patterns will not be considered in generators 2 and 3.

Response time of code generated in generator 2 and executed with Jamaica VM must be

consistent with results of MAST scheduling analysis. And the same kind of consistency

should be applicable for Ada 2005 and MAST. All three generators must be consistent,

and they must be designed and developed taking into account the design patterns of

target models/code generated in the other two. UML+MARTE semantics must be the

same for all three generators, the code generated in 2 and 3 generators must be

consistent with scheduling analysis generator.

4. PLATFORM SPECIFIC CONSISTENCY SPECIFICATIONS

This section introduces the analysis based on code generated. This sections includes

details about how to reuse the analysis results in source models, and how to check

consistency of models and analysis results

4.1 ADA RAVENSCAR PROFILE/LWCCM PLATFORM

4.1.1 Task management, synchronization and communication

Ada 2005 has direct support for Ravenscar profile by means of a dedicated pragma

Profile. When using this compiler directive, the compiler ensures, among others:

 All tasks are statically declared and, consequently, are known at compilation

time.

 A Program_Error exception is raised if any task terminates. It also rejects code

with abort statement.

 All tasks are declared at library level, so, a hierarchy of tasks is impossible. A

compilation error is raised otherwise.

 Entries and accepts can only have one task queued. Otherwise a Program_Error

exception is raised. Requeue statement is forbidden as well as select statement

since task’s queues are not allowed.

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 17

Confidentiality: Public Distribution

 Entries barriers must be simple Boolean expression. This simplifies the

evaluation of entries and improves the efficiency of the program.

 Synchronization and communication between tasks are performed through

protected objects, which are a high level, safe an efficient mechanism to provide

mutual exclusion access to data.

 Pragma Detect_Blocking is used, which provides detection of potentially

blocking operations at compilation time.

 System scheduler is established as First Input First Output within priorities

 Only absolute delays (delay until statement) are used.

Moreover, Ada supports:

 pragma Storage_Size that allows defining the maximum amount of stack

memory that a task can use. Moreover, Ada support definition of size fixed user

defined storage pools in which is allowed to use dynamic memory.

 pragma Priority in the task specifications which permits to establish the priority

of the task at compilation time. Ada also provides pragma Locking_Policy. With

this pragma is possible to select which policy will be used in the interactions

between priority task scheduling and protected object ceilings.

4.1.2 Time management

ORK+ provides a wide support for time management:

 In ORK+, time is represented internally as a 64-bit integer number of ticks.

Therefore, the interval of time values that can be represented in this way is

approximately -23360..+23360 years.

 LEON2 provides two integer 24 bits timers. With one of them, ORK+ provides

the basis for a high-resolution clock used to provide a time zone independent,

monotonically increasing, real time clock (called “Real time clock”). The other

timer is used to provide a high-resolution timer (General Purpose Timer, in

ORK+) which is used to provide the required support for precise alarm handling.

 In order to provide a high resolution clock, the least significant part of the clock

is held in the `Real Time Clock hardware register', and the Real Time Clock is

programmed to interrupt periodically, updating the most significant part of the

clock. As a result, the clock tick is equal to the period of the input signal of the

downcounter divided by the prescaler. That is the processor clock period divided

by 4 in the current implementation. The clock is a count of ticks and is not

synchronized with external sources. As a result, the clock does not jump.

 The overhead due to the interruptions management must be as low as possible

and bounded. In ORK+ for 50 MHz LEON2 this overhead is of 4756 processor

cycles.

 Clock function must have bounded execution time. In ORK+ the Clock function

takes 522 processor’s cycles.

D4.3 – Predictability property-preservation needs

Page 18 Version 1.1 26 January 2011

Confidentiality: Public Distribution

 In one hand, each task has attached its execution time timer. This counter is

incremented only when a task is running. In the other hand, one task could have

multiple real-time timers associated. However, this feature is not useful in

Ravenscar because select statement is forbidden; so, only one real-time timer is

attached to a task.

 All timing events (pending delays) are queued in a single queue which is ordered

by absolute expiration time. A timing event can’t be removed from the queue

before the delay expires. This helps to keep simple the implementation of the

platform.

4.1.3 Interrupt management

The interrupts management in Ada is provided by means of protected procedures, which

ensures mutual exclusion access and introduces a very low overhead in the system

performance.

4.1.4 Memory management

 Ada supports definition of size fixed user defined storage pools in which is

allowed to use dynamic memory. Ada storage pools can be completely

customized by the user to adapt it to his requirements.

 Ada provides volatile variables with pragma Volatile. When this pragma is used,

the compiler must suppress any optimizations that would interfere with the

correct reading of the volatile variables. For example, two successive readings of

the same variable cannot be optimized to just one or reordered.

 In Ada is possible to declare a variable as atomic with the pragma Atomic.

Atomic implies volatile access, however, since not all types can be access as

atomic, the compiler must reject the code if the atomic access of a concrete type

it is not supported. When a variable is declared as atomic, the compiler ensures

that:

o The architecture guarantees atomic memory loads and stores,

o Reordering or suppressing redundant accesses to the object optimizations

are disallowed.

4.2 LINUX/OSE PLATFORM

4.2.1 Linux

4.2.1.1 Task management, synchronization and communication

 For real-time systems Linux provides a FIFO and a round robin scheduler

(SCHED_FIFO, SCHED_RR) with static real-time priorities. Threads can only

be preempted by threads with a higher priority or additionally due to expired

time slice (SCHED_RR). To prevent priority inversion the PREEMPT_RT patch

introduces priority inheritance mutexes (rt_mutex).

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 19

Confidentiality: Public Distribution

 In general threads can be created dynamically during run-time. However, it is

possible to define limits of how many threads can be created. Analysis assumes

the infinite execution threads where there are not errors.

 Besides mutexes Linux support futexes (fast userspace mutual exclusion), which

are reducing the amount of expensive system calls because most checks are done

in userspace.

4.2.1.2 Time management

 Since Linux kernel 2.6.16 the hrtimer based infrastructure is included in the

mainline. This subsystem offers high resolution timers which are independent of

ticks and based on nanoseconds. The time value is stored as plain nanoseconds

on 64 bit CPUs and as a seconds, nanoseconds pair on 32 bit CPUs.

 Internally a list of next timer events is kept which are managed via a rb-tree data

structure. This decouples the timer system from a fixed system tick (jiffies).

 The hrtimer system can be used in kernel modules (e.g. real-time drivers) direct-

ly and also some user space calls are implemented using hrtimer like nanosleep,

POSIX timers or itimer. For other timer based services the ticks are emulated by

hrtimer.

4.2.1.3 Interruptions management

 To reduce interrupt latencies the PREEMPT_RT patch introduces threaded inter-

rupt handlers. This allows assigning real-time priorities to interrupt handler

which are executed as processes. Because the interrupts are executed in process

context, they can also be pre-empted by regular processes with higher priorities.

4.2.1.4 Memory management

 Linux supports the use of virtual memory. To prevent that memory of real-time

applications is swapped out, the mlockall() call can be used.

 Resource limits can be enforced, limiting the amount of virtual memory, data

segment and stack size.

 Applications can allocate dynamic memory via calling malloc().Due to its im-

plementation, it can’t be used on hard real-time systems. Application specific

memory allocators can be implemented which are using statically allocated

memory or during startup allocated dynamic memory.

4.2.2 OSE

4.2.2.1 Task management, synchronization and communication

 The core concepts in OSE are processes and signals. Inter process

synchronization and communication between processes is done through signals

(preferably) that processes send and receive (although use of semaphores is

possible and supported, but it is not a recommended approach). So sharing

D4.3 – Predictability property-preservation needs

Page 20 Version 1.1 26 January 2011

Confidentiality: Public Distribution

resources is not a recommended and commonly used method in OSE which

leads to better reliability and stability of the system.

 Signals can be used to implement other primitives such as semaphores or

monitors.

 The fundamental building block in OSE is Process. An OSE process is actually a

thread with some special features. An OSE process can be dynamic or static and

of type interrupt, timer-interrupt, prioritized, background or phantom.

 Static processes are configured at compile time and are created at the start of the

system. It is not allowed to kill a static process.

 In configuring static processes, it is possible to define parameters such as

process name, stack size, priority, block to which the process belongs and

process redirection table. The process redirection table causes the signals sent to

that process to be forwarded to another processes. Since process redirection

complicates analysis, it can be avoided in CHESS transformations.

 Creation of dynamic OSE processes can be selectively not used.

 It is possible to group and assign several processes to a process block. Each

block can have its own memory pool.

 It is possible to stop and start a process. The kernel keeps a record of how many

times a process has been stopped. A process block can also be stopped. (Only

prioritized, background and timer-interrupt processes can be stopped. The start

and stop calls have no effect on process types that cannot be stopped). Stopping

a timer-interrupt process means that it will no longer be scheduled to run at its

specified time interval.

 Execution of a process can also be delayed using Delay system call. Delay is not

available for interrupt processes.

 Prioritized processes are implemented as infinite loops.

 Phantom processes contain no code and only a signal redirection table and used

as a logical channel when communicating across target boundaries (images of a

remote process).

 Response-time critical tasks can be defined as interrupt processes.

 Background processes have lowest priority level and used to spend leftover of

CPU time

 In waiting for receiving a signal, it is possible to use receive_w_tmo (Receive

with timeout) which causes the caller process to be suspended only for the

duration specified and continue after expiration of that time.

 It is possible for an interrupt process to see why it was scheduled (using

wake_up()). It can be due to hardware interrupt, invoked by a signal or its fast

semaphore (each process has one) is signalled.

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 21

Confidentiality: Public Distribution

 A load module in OSE is a file that includes a program’s code and data content,

and information about how the code and data shall be loaded. This concept can

be used as an option in mapping and deployment of components from the

CHESS model.

 In OSE, the Main process is responsible for starting all static processes and

System Daemon is used for creating and killing processes and blocks. It is

possible to change the priorities for these two processes if needed.

 Create handlers are called each time a process is created and there can be several

create handlers which in this case will run in undefined order when a process is

created. This is important to note for predictability of any mechanism that is

built using this feature (this also applies to swap-in handlers).

4.2.2.2 Time management

 Real Time Clock (RTC) is a component
1
 in OSE to achieve absolute timing

requirements. It is a prioritized process which sets and keeps absolute date and

time, generates alarm signals at requested date and time, read the time with the

resolution of the operating system, and can be used for converting between

different representation of dates and times.

 Time Out Server (TOSV) is a component that allows the user to handle very

short duration time intervals. The timer resolution is in milliseconds (although

the resolution can be limited to the resolution of the system clock ticks) and up

to 50 hours.

 OSTIME (a time given in milliseconds) and OSTICK (Time as reported by

get_systime() and get_ticks()) defined types in OSE for timing purposes are

declared as unsigned long.

 It is possible to define the time between each system tick using

SYSTEM_TIMER configuration parameter. It is target independent and is in

milliseconds.

 If an internal timer is available on the CPU chip, it can be used as a system tick

timer. The frequency driving the internal timer should be specified. E.g.

krn/internal_timer=16500 krn/internal_timer_vector=255

4.2.2.3 Interrupt management

 There are three ways for triggering of an interrupt: hardware interrupt, time

interrupt and software event (signal of fast semaphore).

 Among other characteristics (e.g. name) the priority, stacksize, and blockname

of an interrupt process can also be defined.

4.2.2.4 Memory management

 Basic type of memory area in OSE is pool. There is always one global memory

pool which is the system pool. System processes and data reside in this pool.

1
 By term component here we simply mean a part of the OS architecture.

D4.3 – Predictability property-preservation needs

Page 22 Version 1.1 26 January 2011

Confidentiality: Public Distribution

 It is possible to create local pools. Pools can be created dynamically or statically.

 In configuring the system pool, different buffer sizes (e.g. for allocating to

signals) and stack sizes are defined.

 A block in OSE may also have its own memory pool.

 It is possible to group one or more memory pools into a domain as mechanism

for memory protection between processes.

 Memory is allocated and returned after use to a common memory pool.

 In OSE a heap can be created or deleted dynamically.

 Concept of region: every accessible logical address in a memory-protected

system must belong to a region. A region is either static of dynamic. Accessing

an address outside a region leads to an access violation interrupt and eventually

an OSE error. It is possible to define R/W/X (execute) permission per regions.

 Free heap buffers are stored in lists according to size. If a buffer of correct size is

found in a free, it is removed from the list, initialized and returned to the

application requesting memory. If no such buffer is found, the heap locates the

closest higher slot with non-empty free-list and splits the first buffer from that

list. Maximum time it takes to allocate a buffer from the heap is the time it takes

to split buffers all the way from largest size down to the smallest size handled by

the heap 23 steps.

 OSE supports three different mappings of memory; i.e. physical vs logical

addresses: Single Address Space Equal (SASE, logical addresses are equal to

physical), Single Address Space (SAS) and Multiple Address Space (MAS).

 Heap memory in OSE has low overhead of 9/17 bytes (without/with file and line

info)

4.3 RTSJ PLATFORM

4.3.1 Task management, synchronization and communication

 The RTSJ allows dynamic thread creation and has no notion of critical time for

static thread creation. Therefore, static thread creation has to be emulated.

Emulation of static thread creation can be achieved by an initialization thread

that gets started from the program's main method, creates and starts all threads of

the system, and then terminates. Dynamic thread creation must be disallowed,

except in the initialization thread. It would be possible to customize the

JamaicaVM for the CHESS project to monitor thread creation and throw a

runtime exception if applications attempt to create a thread from outside the

initialization thread.

 In the RTSJ, threads are allowed to terminate. To adhere to the requirement that

all threads are non-terminating, code generators must only generate non-

terminating threads. This can, for instance, be achieved by only generating

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 23

Confidentiality: Public Distribution

threads that are instances of the class NonTerminatingThread as sketched in

Figure 4.3.1.

 In Java, shared resources are protected by object monitors. Conditional

synchronization is supported through the primitives wait() and notify(). Multiple

waiters for the same object monitor are allowed. It is, however, not hard to

implement a wait-method that throws an exception when called while another

thread is already waiting to enter the same monitor. To this end, a counter

variable can be used as sketched in Figure 4.3.2.

 While the RTSJ does not address the configuration of stack sizes, the

JamaicaVM allows configuring maximal stack sizes for threads. Java specifies

that a StackOverflowError has to be thrown when stack size limits are exceeded.

The RTSJ makes it possible to avoid garbage-collected heap memory, using

immortal memory and scoped memory instead.

 The RTSJ requires a base scheduler that is priority-based. While arbitrary

dynamic priority changes are allowed, this feature can be avoided. The RTSJ

public abstract class NonTerminatingThread extends RealtimeThread {

 ... // constructors as in class RealtimeThread

 final public void run() {

 body();

 throw new RuntimeException(“Illegal termination of body().”);

 }

 /**

 * The actual task body, to be implemented by subclasses.

 * Must not terminate.

 */

 abstract public void body();

}

Figure 4.3.1: RTSJ: Emulating non-terminating threads

public abstract class ObjectWithAtMostOneWaiter {

 abstract boolean condition();

 private waiters = 0; // Invariant: waiters == 0 || waiters == 1

 public synchronized void waitAtMostOne() {

 if (waiters == 1) {

 throw new RuntimException(“Illegal call to waitAtMostOne().”);

 }

 waiters++;

 while (!condition()) { wait(); }

 waiters--;

 }

}

Figure 4.3.2: RTSJ: Emulating condition synchronization with at most one waiter

D4.3 – Predictability property-preservation needs

Page 24 Version 1.1 26 January 2011

Confidentiality: Public Distribution

specifies the priority ceiling protocol as an optional VM feature. The

JamaicaVM supports the priority ceiling protocol.

 For thread synchronization, Java provides the primitives wait and notify. These

can be used for implementing condition variables. Code generators must ensure

that synchronization patterns that cannot be analysed are avoided.

 In the RTSJ, absolute delays are supported through the Timer class. Timers

trigger events at specified times and allow binding asynchronous event handlers

to these events. The Timer class has two subclasses: OneShotTimer and

PeriodicTimer. A one-shot timer is associated with a single release time, which

can be either absolute or relative. In order to delay an action by an absolute time,

one can create a one-shot timer with an absolute release time and bind to it the

action as an asynchronous event handler. A periodic timer is associated with a

single start time, which is either absolute or relative, and with a period, which is

relative. An absolute time can also be used to specify the start time of the first

release of a periodic thread.

 Java and the RTSJ specify which built-in operations are potentially blocking.

The most important ones are calls of synchronized methods, entries to

synchronized blocks, calls to Thread.wait() and calls to Thread.join(). There is

no built-in annotation for potentially blocking user-written methods. However,

such an annotation could be defined in terms of Java's generic annotation syntax.

While Java compilers do not detect potentially blocking methods, it would not

be hard to instrument Veriflux to this end, based on whether methods may

(transitively) call one of Java's built-in blocking methods.

 The RTSJ does not specify a scheduling order for schedulable objects of equal

priority. However, the base scheduler of the JamaicaVM schedules such objects

in FIFO order.

4.3.2 Time management

 The RTSJ requires a system real-time clock that is monotonically non-

decreasing and measures time with respect to some epoch (e.g., 1 January 1970,

00:00:00, or system start-up time). Time values are represented by a 64-bits

millisecond component and a 32-bits nanosecond component. The system real-

time clock need not be synchronized with the external world.

 According to the RTSJ, the system real-time clock must progress as uniformly

and be as accurate as allowed by the underlying hardware. This implies for

instance, that it must not stall and must not be subject to leap ticks.

4.3.3 Interrupt management

 Interrupts from peripherals are not directly addressed by the RTSJ. However, the

RTSJ specifies cost monitoring and enforcement, which can be used to deal with

rare cost overruns due to interrupts.

4.3.4 Memory management

 The RTSJ permits dynamic memory allocation, including dynamic object

allocation on the garbage-collected heap, in scoped memory areas and in

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 25

Confidentiality: Public Distribution

immortal memory, and dynamic creation of new scoped memory areas. In order

to establish within an initialization phase a bound on the total memory demand,

one can implement an initialization thread that allocates all objects in immortal

memory and all scoped memory areas that will be needed throughout the

execution, so that further object allocation in immortal memory and further

creation of scoped memory areas can be avoid thereafter. Dynamic object

allocation within scoped memory areas must still be allowed after the

initialization phase, because Java does not permit passing objects or arrays on

the call stack. An upper bound on the overall memory demand is determined by

the sum of the sizes of the scoped memory areas, plus the size of immortal

memory, plus the sum of the stacks sizes for each thread.

 Java allows declaring variables as volatile. Thread-shared variables that

are accessed without synchronization should always be declared volatile,

because otherwise program behaviour is hardly predictable. The Java Language

Specification guarantees that a thread T observing volatile variables written by

another thread S, sees their values in an order that is consistent with the order

that S has written them according to the program text. On multi-processor

implementations, the same is not necessarily the case for non-volatile variables.

 The Java Language Specification requires that all variable accesses are atomic,

except from accesses to variables of type long or double, which require two

memory accesses. Accesses to longs and doubles should therefore always be

synchronized.

 The RTSJ does not require that RTSJ-compliant VMs must disable or avoid

virtual memory. The RTSJ offers interfaces for programmers to directly access

the kinds of memory that a particular hardware offers.

5. REFERENCES

[1] A. Burns and A. Wellings. HRT-HOOD: A Structured Design Method for Hard Real-Time

Ada Systems. ELSEVIER, 1995.

[2] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González. A Practitioner’s Handbook for

Real-Time Analysis: Guide to Monotonic Analysis for Real-Time Systems. Kluwer Academic

Publishers, 1993

[3] M. Chen and K. Lin. “A Priority Ceiling Protocol for Multiple-Instance Resource”.

Proceedings of Real-Time Systems Symposium, 1991.

[4] A. Siebenborn and A. Viehl and O. Bringmann and W. Rosenstiel: “Control-Flow Aware

Communication and Conflict Analysis of Parallel Processes”, Proceedings of the 12th Asia and

South Pacific Design Automation Conference ASP-DAC 2007, Yokohama, Japan 2007

[5] A. Viehl and M. Schwarz and O. Bringmann and W. Rosenstiel: “Performance Risk

Analysis at System-Level”, CODES+ISSS 2007

[6] A. Viehl and M. Schwarz and O. Bringmann and W. Rosenstiel, “A Hybrid Approach for

System-Level Design Evaluation”, Embedded System Design: Topics, Techniques and Trends

2007

D4.3 – Predictability property-preservation needs

Page 26 Version 1.1 26 January 2011

Confidentiality: Public Distribution

[7] A. Viehl and M. Pressler and O. Bringmann and W. Rosenstiel: “White Box Performance

Analysis Considering Static Non-Preemptive Software Scheduling”, Proceedings of the Design,

Automation, and Test in Europe Conference (DATE) 2009

[8] M. Joseph and P. K. Pandya, “Finding Response Times in a Real-Time System”, The

Computer Journal 29(5):390-395, 1986

[9] J.B. Goodenough, and L. Sha, “The Priority Ceiling Protocol: A Method for Minimizing the

Blocking of High Priority Ada Tasks”, Proceedings of the 2
nd

 International Workshop on Real-

time Ada issues, pp. 20-31, 1988

[10] K. Tindell, “Adding Time-Offsets to Schedulability Analysis”, Technical Report No. 221,

Real-Time Systems Group, Department of Computer Science, University of York, York, UK,

1994.

[11] TIMMO Project. (2010, Jan.) TIMMO - Timing Model. [Online]. http://timmo.org/

[12] TIMMO Partners, "TADL: Timing Augmented Description Language version 2", Available

http://timmo.org/pdf/D6_TIMMO_TADL_Version_2_v12.pdf, 2009.

[13] N. Fiertag, K. Richter, J. Nordlander, and J. Jonsson, "A Compositional Framework for End-

to-End Path Delay Calculation of Automotive Systems under Different Path Semantics", in

Proceedings of the IEEE Real-Time System Symposium (RTSS), Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems (CRTS'08), Barcelona, 2008.

[14] MSR MEDOC, "Element Attribute Documentation", Available http://msr-

wg.de/medoc/download/msrsw/v230/msrsw_v230-eadoc-en/msrsw_v2_3_0.sl-eadoc.pdf, 2005.

[15] The ATESST Consortium, "EAST ADL 2.0 Specification," Available

http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf, 2008.

[16] The Real-Time Specification for Java. http://www.rtsj.org

[17] JSR 282 Expert Group. Realtime Specification for Java, version 1.1,

http://jcp.org/en/jsr/detail?id=282. May 2009.

[18] F. Siebert. Hard Realtime Garbage Collection in Modern Object Oriented Programming

Languages. aicas Books. 2002.

[19] Jamaica VM 3.4 User Manual. aicas. http://www.aicas.com/documentation

[20] HIJA, High-Integrity Java. Project Number IST-511718 of the 6
th

 framework programme of

the European Commission. http://www.hija.info. 2004-2006.

[21] A. Milanova, A. Rountev and B. G. Ryder. Parameterized Object Sensitivity for Points-to

Analysis for Java. ACM Transactions on Software Engineering Methodology. 14(1):1-41, 2005.

[22] JSR 308 Expert Group. Annotations on Java Types. Java Specification Request, Java

Community Process, http://types.cs.washington.edu/jsr308. November 2009.

[23] M. Tofte, J.-P. Talpin: Region-based Memory Management. Information and

Computation(2): 109-176. 1997.

http://timmo.org/
http://jcp.org/en/jsr/detail?id=282
http://www.aicas.com/documentation
http://www.hija.info/

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 27

Confidentiality: Public Distribution

[24] D. Grossman, G. Morissett, T. Jim, M. Hicks, Y. Wang, J, Cheney. Region-Based Memory

Management in Cyclone. Proc. of the Conf. on Programming Languages Design and

Implementation. 2002.

[25] F. Henglein, H. Makholm, H. Niss. Effect type systems and region-based memory

management. In Advanced Topics in Types and Programming Languages, Benjamin Pierce (ed.),

MIT Press, 2005.

[26] M. Naik, A. Aiken: Conditional must not aliasing for static race detection. Proc. of the Conf.

on Principles of Programming Languages. 2007.

[27] C. Flanagan, K.R.M Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R. Stata. Extended Static

Checking for Java. Proc. of the Conf. on Programming Languages Design and Implementation.

2002.

[28] B. Beckert, R. Hahnle, P. Schmitt (eds.). Verification of Object-Oriented Software: The

KeY Approach. Springer Verlag, LNCS 4334. 2007.

[29] A. Viehl and M. Pressler and O. Bringmann, “Bottom-Up Performance Analysis

Considering Time Slice Based Software Scheduling at System Level”, Embedded Systems Week

(CODES-ISSS) 2009

[30] J.C. Palencia, M. González Harbour, "Schedulability Analysis for Tasks with Static and

Dynamic Offsets", Proceedings of the 19th IEEE Real-Time Systems Symposium, 1998

[31] J. Gosling, B. Joy, and G. Steele: The Java Language Specification, 3rd Edition.

http://java.sun.com/docs/books/jls/

[32] J. Manson, W, Pugh, and S. V. Adve: The Java Memory Model, 32nd ACM Symposium on

Principles of Programming Languages, 2005.

[33] OMG CORBA Component Model Specification version 4.0.

[34] A. Burns, B. Dobbing, and T. Vardanega, Guide to the use of the Ada Ravenscar Profile in

high integrity systems, University of York, U.K., TR YCS-2003-348, 2003. [Online]. Available:

http://www.cs.york.ac.uk/ftpdr/reports/YCS-2003-348.pdf

[35] MAST, Modeling and Analysis Suite for Real-Time Applications, http://mast.unican.es/

[36] AbsInt, aiT Worst-Case Execution Time Analyzers, http://www.absint.com/ait/

[37] D2.1 – CHESS Modelling Language and Editor Version. CHESS Project.

[38] Object Management Group. OMG Unified Modeling Language TM (OMG UML),

Superstructure. Version 2.2. http://www.omg.org/spec/UML/2.2/Superstructure

[39] Object Management Group. A UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded systems, Beta 3. ptc/ 2009-05-13

[40] Object Management Group. UMLTM Profile for Schedulability, Performance, and Time

Specification.

http://www.cs.york.ac.uk/ftpdr/reports/YCS-2003-348.pdf
http://mast.unican.es/
http://www.absint.com/ait/
http://www.omg.org/spec/UML/2.2/Superstructure

D4.3 – Predictability property-preservation needs

Page 28 Version 1.1 26 January 2011

Confidentiality: Public Distribution

[41] A Practitioner's Handbook for Real-Time Analysis. Mark H. Klein, Thomas Ralya, Bill

Pollak. Kluwer Academic Publishers. 1993.

[42] EMF: Eclipse Modeling Framework, 2nd Edition. Dave Steinberg, Frank Budinsky,

Marcelo Paternostro, Ed Merks. Addison-Wesley Professional. 2009.

[43] AUTOSAR http://www.autosar.org/

[44] Open SystemC Initiative (OSCI) http://www.systemc.org/

[45] SysXplorer Homepage http://www.fzi.de/index.php/de/component/content/article/238-ispe-

sim/4353-sim-tools-sysxplorer

[46] OMG SysML Specification http://www.omgsysml.org/

[47] IP-XACT specification by Spirit Consortium http://www.spiritconsortium.org

[48] Association for Standardizing of Automation and Measuring Systems (ASAM) – FIBEX

Specification: http://www.asam.net

[49] A. Viehl, J. Dukadinov, O. Bringmann, W. Rosenstiel: TRANSYSCTOR: A General

Methodology and Framework for Rule-Based Transformation and Refactoring of SystemC

Designs

[50] André Hergenhan, Wolfgang Rosenstiel: Static Timing Analysis of Embedded Software on

Advanced Processor Architectures. DATE 2000

[51] Robert Bosch GmbH, Controller Area Network,

http://www.semiconductors.bosch.de/en/20/can/index.asp

[52] Altran GmbH & Co. KG, FlexRay, http://www.flexray.com/

[53] MOST Cooperation, http://www.mostcooperation.com/

[54] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar Profile in

high integrity systems. Technical Report YCS-2003-348, University of York, 2003.

http://www.cs.york.ac.uk/ftpdir/reports/YCS-2003-348.pdf.

[55] M. Bordin and T. Vardanega, Correctness by Construction for High-Integrity Real-Time

Systems: A Metamodel-Driven Approach, Proc. 12th Int. Conference on Reliable Software

Technologies - Ada-Europe, pp. 114-127 , 2007

http://www.autosar.org/
http://www.systemc.org/
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4353-sim-tools-sysxplorer
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4353-sim-tools-sysxplorer
http://www.omgsysml.org/
http://www.spiritconsortium.org/
http://www.asam.net/
http://www.semiconductors.bosch.de/en/20/can/index.asp
http://www.mostcooperation.com/
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2003-348.pdf

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 29

Confidentiality: Public Distribution

APPENDIX A. REQUIREMENTS ON PLATFORMS FOR THE CONSISTENCY OF ANALYSIS

METHODS

ID
 (

m
a
x
=

8
0
)

R
e
q

u
ir

e
m

e
n

t

P
la

tf
o

rm

T
o

p
ic

A
n

a
ly

s
is

 M
e
th

o
d

 General requirements for of analysis on platforms

1 A cyclic operation is mapped to a thread of control

2

A sporadic operation is mapped to a thread of control and re-
quires a request buffer protected from mutual exclusion with
the immediate ceiling protocol. A blocking operation of the
buffer is the single point of suspension for the task. Client of the
sporadic operation are simply posting their sporadic request in
the protected buffer.

General
Sporadic
Events

Scheduling

3
A protected operation is mapped to a shared resource pro-
tected with the immediate ceiling protocol.

General
Protected
Resource

Scheduling

4
Interactions with a sporadic operation as destination imply an
access to the protected resource of the sporadic task

General
Sporadic
Events

Scheduling

5
An operation with at least one parameter cannot have a cyclic
activation pattern

General
Periodic
Events

Scheduling

6
An operation with at least one out or in out parameter cannot
have a sporadic activation pattern

General
Sporadic
Events

Scheduling

7 Static creation of threads General Threads Scheduling

8 Threads must not finish General Threads Scheduling

9

A single invocation event for each thread. The invocation event
may be generated by the passing of time (for time-triggered
threads) or by a signal from either another thread or the envi-
ronment (for sporadic threads).

General Threads Scheduling

10
Thread interaction only by means of shared data with mutually
exclusive access.

General Threads Scheduling

11

Deadlines Checking: Each thread must have its work done be-
fore of a given time, i.e., its deadline. The system must be able
to detect when a thread is overrunning its deadline. This can be
achieved, for instance, by means of real time timers. If this oc-
curs, an exception must be raised and the thread execution
must be stopped

General
Platform
Check

Scheduling

12

Worst Case Execution Time (WCET) Checking: As schedulable
software, all function executions must be bounded and, hence,
must have and WCET. The platform must be able to detect
when a thread is overran.

General
Platform
Check

Scheduling

D4.3 – Predictability property-preservation needs

Page 30 Version 1.1 26 January 2011

Confidentiality: Public Distribution

13
Platform must provide a mechanism to detect, in run time, user
defined storage pool overflows. In this case, an exception must
be raised.

General
Platform
Check

Scheduling

14 Simulated ECUs only contain a single processor. General
Computing
Resource

Simulation

15 Threads are statically allocated and initialized during startup. General Threads Simulation

16
Scheduling is restricted to fixed priority preemptive and EDF.
The later is a non standard AUTOSAR extension.

General Threads Simulation

17 Threads are periodic or sporadic. General Threads Simulation

18
Communication is restricted to automotive networks like CAN,
FlexRay and MOST or a generic communication infrastructure.

General Threads Simulation

19
No shared data and no synchronization mechanisms between
threads on a single ECU.

General Threads Simulation

20 The threads must not finish.
AUTOSAR
Linux

Threads Simulation

21 The threads have a static priority, which remain unchanged
AUTOSAR
Linux

Threads Simulation

22 Scheduling in FIFO or round robin manner
AUTOSAR
Linux

Threads Simulation

23
Hierarchical (nested) threads are forbidden because it compli-
cates schedulability static analyses

General Threads Scheduling

24
Thread queues are prohibited; therefore, having more than one
thread waiting on a shared resource or for another thread is not
allowed.

General Threads Scheduling

25
The system must allow defining the maximum amount of stack
memory that a thread can use

General Threads Scheduling

26 Dynamic memory allocation is forbidden
Ada
Ravenscar
Profile

Threads Scheduling

27
Only scoped, inmortal or pool based memory allocation are
allowed. The use of the general (unbounded) memory pool for
dynamic storage allocation is forbidden

Java-RTSJ Threads Scheduling

28

Threads must support static priorities. The priority of a thread
must not change except to avoid priority inversion, in which
case, only the use of immediate ceiling priority protocol is al-
lowed

General Threads Scheduling

29
Thread synchronization must be done through simple algo-
rithms as, for instance, condition variables

General Threads Scheduling

30
The platform must support absolute delays. This provides a
mechanism to suspend a thread leaving the processor free for
others threads

General Threads Scheduling

31
The system must support potentially blocking operations detec-
tion at compilation time

General Threads Scheduling

32
The system scheduler must be First Input First Output within
priorities

General Threads Scheduling

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 31

Confidentiality: Public Distribution

33
Time zone independent, monotonically increasing, absolute
clock

General Time Scheduling

34
The temporal granularity of the system should be as high as
possible, so that timers can be established as accurately as pos-
sible

General Time Scheduling

35
The overhead due to the interruptions management must be as
low as possible

General Time Scheduling

36
Interrupt’s management should be temporarily bounded and
must allow the use of priorities and, also, partial or complete
inhibition of interruptions

General
Interruption
Handlers

Scheduling

37 Execution time measurement of modeled components General
Platform
Check

Simulation

38
Event activation measurement. Events are periodic, sporadic
etc. and are subject to jitter which is expressed as an assump-
tion during simulation

General
Platform
Check

Simulation

39

Synchronization of events can be modeled, i.e. the occurrence
of events within a time window. The synchronization groups
events or signals and measures the elapsed time between the
occurrence of the first and the last event (or signal).

General
Platform
Check

Simulation

40
The system must have bounded memory usage. To this end, all
the memory to be used must be allocated in the system initiali-
zation

General Memory Scheduling

41
System must support volatile memory access, i.e., a method to
specify that the variable in question may suddenly change in
value

General Memory Scheduling

42

The platform must support atomic memory access. In others
words, it must be able to specify that the code generated must
read and write the type or variable from memory atomically, i.e.
as a single/non-interruptible operation

General Memory Scheduling

43 Virtual memory mechanism should be avoided

 Ada-2005 Ravenscarn platform

44
All tasks are statically declared and, consequently, are known at
compilation time

Ada
Ravenscar
Profile

Tasks Scheduling

45 A Program_Error exception is raised if any task finishes
Ada
Ravenscar
Profile

Tasks Scheduling

46
All tasks are declared at library level, so, a hierarchy of tasks is
impossible

Ada
Ravenscar
Profile

Tasks Scheduling

47 Entries and accepts can only have one task queued
Ada
Ravenscar
Profile

Tasks Scheduling

D4.3 – Predictability property-preservation needs

Page 32 Version 1.1 26 January 2011

Confidentiality: Public Distribution

48 Entries barriers must be simple Boolean expression
Ada
Ravenscar
Profile

Tasks Scheduling

49

Synchronization and communication between tasks are per-
formed through protected objects, which are a high level, safe
an efficient mechanism to provide mutual exclusion access to
data

Ada
Ravenscar
Profile

Tasks Scheduling

50
Pragma Detect_Blocking is used, which provides detection of
potentially blocking operations at compilation time

Ada
Ravenscar
Profile

Tasks Scheduling

51
System scheduler is established as First Input First Output
within priorities

Ada
Ravenscar
Profile

Tasks Scheduling

52 Only absolute delays (delay until statement) are used
Ada
Ravenscar
Profile

Tasks Scheduling

53
Ada provides pragma Storage_Size that allows defining the
maximum amount of stack memory that a task can use

Ada
Ravenscar
Profile

Tasks Scheduling

54
Ada provides pragma Priority in the task specifications which
permits to establish the priority of the task at compilation time

Ada
Ravenscar
Profile

Tasks Scheduling

55
In ORK+, time is represented internally as a 64-bit integer num-
ber of ticks. Therefore, the interval of time values that can be
represented in this way is approximately -23360..+23360 years

Ada
Ravenscar
Profile

Time Scheduling

56

LEON2 provides two integer 24 bits timers. With one of them,
ORK+ provides the basis for a high resolution clock used to pro-
vide a time zone independent, monotonically increasing, real
time clock (called “Real time clock”)

Ada
Ravenscar
Profile

Time Scheduling

57

In order to provide a high resolution clock, the least significant
part of the clock is held in the `Real Time Clock hardware regis-
ter', and the Real Time Clock is programmed to interrupt peri-
odically, updating the most significant part of the clock

Ada
Ravenscar
Profile

Time Scheduling

58
The overhead due to the interruptions management must be as
low as possible and bounded. In ORK+ for 50 MHz LEON2 this
overhead is of 4756 processor cycles

Ada
Ravenscar
Profile

Time Scheduling

59
Clock function must have bounded execution time. In ORK+ the
Clock function takes 522 processor’s cycles

Ada
Ravenscar
Profile

Time Scheduling

60
In one hand, each task has attached its execution time timer.
This counter is incremented only when a task is running

Ada
Ravenscar
Profile

Time Scheduling

 D4.3 – Predictability property-preservation needs

26 January 2011 Version 1.1 Page 33

Confidentiality: Public Distribution

61
All timing events (pending delays) are queued in a single queue
which is ordered by absolute expiration time.

Ada
Ravenscar
Profile

Time Scheduling

62
Ada support definition of size fixed user defined storage pools
in which is allowed to use dynamic memory

Ada
Ravenscar
Profile

Memory Scheduling

63

Ada provides volatile variables with pragma Volatile. When this
pragma is used, the compiler must suppress any optimizations
that would interfere with the correct reading of the volatile
variables

Ada
Ravenscar
Profile

Memory Scheduling

64
In Ada is possible to declare a variable as atomic with the
pragma Atomic

Ada
Ravenscar
Profile

Memory Scheduling

 Java-RTSJ platform

65
The RTSJ allows dynamic thread creation and has no notion of
critical time for static thread creation. Therefore, static thread
creation has to be emulated

Java-RTSJ Threads Scheduling

66
In the RTSJ, threads are allowed to terminate. To adhere to the
requirement that all threads are non-terminating

Java-RTSJ Threads Scheduling

67 In Java, shared resources are protected by object monitors Java-RTSJ Threads Scheduling

68
While the RTSJ does not address the configuration of stack
sizes, the JamaicaVM allows to configure maximal stack sizes for
threads

Java-RTSJ Threads Scheduling

69
 The RTSJ requires a base scheduler that is priority-based. While
arbitrary dynamic priority changes are allowed, this feature can
be avoided.

Java-RTSJ Threads Scheduling

70
For thread synchronization, Java provides the primitives wait
and notify. These can be used for implementing condition vari-
ables

Java-RTSJ Threads Scheduling

71
In the RTSJ, absolute delays are supported through the Timer
class

Java-RTSJ Time Scheduling

72
Java and the RTSJ specify which built-in operations are poten-
tially blocking

Java-RTSJ Threads Scheduling

73
The RTSJ does not specify a scheduling order for schedulable
objects of equal priority. However, the base scheduler of the
JamaicaVM schedules such objects in FIFO order

Java-RTSJ Time Scheduling

74
The RTSJ requires a system real-time clock that is monotonically
non-decreasing and measures time with respect to some epoch

Java-RTSJ Time Scheduling

75
According to the RTSJ, the system real-time clock must progress
as uniformly and be as accurate as allowed by the underlying
hardware

Java-RTSJ Time Scheduling

76

Interrupts from peripherals are not directly addressed by the
RTSJ. However, the RTSJ specifies cost monitoring and enforce-
ment, which can be used to deal with rare cost overruns due to
interrupts

Java-RTSJ Threads Scheduling

D4.3 – Predictability property-preservation needs

Page 34 Version 1.1 26 January 2011

Confidentiality: Public Distribution

77

The RTSJ permits dynamic memory allocation, including dy-
namic object allocation on the garbage-collected heap and in
immortal memory, and dynamic creation of new scoped mem-
ory areas

Java-RTSJ Memory Scheduling

78 Java allows to declare variables as volatile Java-RTSJ Memory Scheduling

79
The Java Language Specification requires that all variable ac-
cesses are atomic, except from accesses to variables of type
long or double, which require two memory accesses

Java-RTSJ Memory Scheduling

80

The RTSJ does not require that RTSJ-compliant VMs must dis-
able or avoid virtual memory. The RTSJ offers interfaces for
programmers to directly access the kinds of memory that a par-
ticular hardware offers

Java-RTSJ Memory Scheduling

