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EXECUTIVE SUMMARY 

This report introduces solutions adopted in CHESS to make consistent analysis models 

and execution platforms properties. The objective of this report is to make as much 

consistent as possible the results of analysis and their equivalent run-time execution 

temporal properties. 

Different analysis methods assume some properties of execution platforms; this 

deliverable includes these assumptions and some solutions to make analysis and 

execution consistent. Specific platforms can address the assumptions with different 

solutions. The analysis methods try to be as much platform independent as possible, but 

their application in specific platform requires some specific customizations and can 

have particular restrictions. 
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1. INTRODUCTION 

In the CHESS tool chain several modelling tools and artefacts handle the same 

information base for different purposes. It is important however that this information be 

handled and interpreted with the same semantics.  Figure 1-1 shows a bird’s eye 

overview of the CHESS tool chain. This deliverable addresses the issue of how to 

ensure the consistency of the forward and backward transformations to be made from 

CHESS ML to analysis tools, from implementation languages and platforms to CHESS 

ML, and the generators from CHESS ML to implementation languages. Code 

generators, transformers to analysis and code analyzers and transformers to CHESS 

ML, and execution platforms must be all semantically consistent, for each analysis 

method.  

Analysis methods are designed and implemented to handle specialized problems, and to 

be applicable in practice they make specific assumptions and impose restrictions and 

limitations. This deliverable discusses the limitations imposed by analysis languages 

and tools on generators and platforms in order to make the analysis applicable and 

trustworthy its results. The analysis methods assume some restrictions on the static and 

dynamic nature of programs; these restrictions are discussed in this deliverable, to 

enhance the execution platforms if and where needed to comply with the suite of 

analysis used in CHESS and to make the code generators preserve the form required of 

their source code products. 

 

Figure 1-1: CHESS tool chain 

1.1 DESCRIPTION OF THE PROBLEM 

The four key technical ingredients of the development approach adopted in the CHESS 

project are: (i) a component model, to design reusable software components; (ii) the 

computational model, which describes the allowable semantics and the necessary 
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constraints to develop analyzable software entities and relates the design entities and 

their attributes to a set of analysis equations of the underlying analysis body of 

knowledge; (iii) a programming model, as a tailored subset of a chosen set of 

implementation language which, together with a set of code archetypes, is able to 

express in the implementation solely and exactly the execution semantics assumed by 

the analysis theory and to convey in the implementation the realization of the extra-

functional attributes used as input for the analysis; and (iv) a conforming execution 

platform, which is in charge of warranting the properties that were asserted by analyze 

and cope with run-time violations w.r.t. non-functional concerns. 

The component model is defined and implemented in WP2. The computational 

model(s) is/are defined in WP4 in conjunction with the selection of the analysis theory 

and techniques to be used in the predictability dimension. The programming model(s) 

and the execution platform(s), which may vary with the industrial domain addressed by 

the project, are specified and supported in WP5. 

The component model we are developing in CHESS is agnostic on the underlying 

computational model. To this end we strive to maintain the component model void of 

predefined semantics for what concerns the extra-functional aspects. While the 

component model of course is equipped with the syntactic means to specify all the 

extra-functional attributes of interest, only at the point of binding to the computational 

model of choice those attributes taken a given semantics which fits exactly the space 

allowed by the chosen analysis theory in the extra-functional dimension of interest. 

When the computational model of choice is selected, the software model must then fully 

abide by all the semantic assumptions and constraints entailed by it. The choice of the 

computational model must obviously also precede the analysis of the model and thus the 

automated generation of the Schedulability Analysis Model (SAM) which is input to the 

analysis engine. 

The following three issues must be carefully addressed to make sure that the above 

vision and notions hold: 

1. The model transformation from PIM to PSM in general and to the SAM in 

particular; 

2. The transformation from PSM to system implementation in terms of source code 

and bindings to the middleware; 

3. The execution platform. 

As regards issue 1, we must make provably sure that the exercised transformations 

should not generate PSM/SAM model elements or assemblies that conflict with the 

semantics allowed by the computational model of choice. 

As regards issue 2, the transformation to source code and middleware bindings must 

conform to the programming model of choice and shall not introduce language 

constructs and calls that break the semantics assumed and allowed by the analysis 

theory in use. Moreover, the model-to-code transformations shall create, possibly by use 

of predefined and proven code archetypes: (i) code structures that support the static 

enforcement of timing properties; (ii) code structures that permit the monitoring of 

properties whose enforcement can only be made at execution time. 
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At the time of this writing, the only computational model that has clearly shown to fit 

the CHESS needs and vision is the Ravenscar Computational Model (RCM) [54, 55]. In 

the following section we illustrate some examples of semantics imposed by the RCM 

and situations in which that semantics is violated. 

1.2 SOME EXAMPLES OF RUN-TIME SEMANTIC INCONSISTENCY 

1.2.1 Parameter direction and concurrent semantics 

Operations declared in provided and required interfaces have a signature that specifies 

the operation name and an ordered list of parameters and exceptions. Each parameter is 

typed with a data type whose definition must be accessible to the caller, and has a 

parameter direction. The value for parameters direction can be “in” (the actual 

parameter is only read inside the operation), “out” (the actual parameter is only written 

inside the operation and the last value written to it is kept at the end of the operation), or 

“in out” (the actual parameter is both read and written in the scope of the operation and 

the last value is kept at the end of the operation; or, in the variant known as “value-

return”, the actual parameter is read in the scope of the operation and updated on return 

from it). 

An example of an operation can be: 

operationName(in Integer p, out Float z)  

Later in the design process, interfaces are used to type the provided interfaces (PI) and 

required interfaces (RI) of component types and are reported in the derived component 

implementations and then instances. 

At instance level, the representation of operations in PI is decorated with attributes that 

declare the intended concurrent semantics. In our case of interest, we will elaborate on 

operations with out or in out parameters which are declared as sporadic operations. 

A sporadic operation is executed by a dedicated thread of control and there is a 

guaranteed separation between two subsequent executions of it, called minimum inter-

arrival time (MIAT). 

Suppose then that we want to target RCM from the CHESS component model and thus 

generate RCM-compliant entities for the schedulability analysis model and then at 

implementation. 

In RCM an operation with exclusively in parameters would be rendered as a composite 

structure comprised of a thread and a protected buffer. Clients calling the operation 

would post a request to the designated interface. That request would be reified into an 

object and posted in the protected buffer. The thread would then be enqueued on a 

private entry to that buffer. When the buffer is empty, the thread would block. On a 

non-empty buffer, the thread would fetch the execution request at the logical top of the 

buffer, according to the queuing policy selected for the buffer, then unfold the 

invocation object and execute the requested operation. If the thread was marked 

sporadic, the buffer status becoming not-empty would represent the single source of 

activation events for the thread and the thread structure would take measures to enforce 

the MIAT specified for the sporadic operation. 
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As it is evident, the RCM has a specific and arguably straightforward way of realizing 

the sporadic semantics of the operation. Another computational model, like that 

underlying a cyclic executive, would need a radically different way of expressing the 

event-based sporadic semantics; in the above example, the differences would be needed 

to reconcile it with the static nature of the time-triggered schedule. 

RCM allows us to map an operation with exclusively in parameters and sporadic nature 

on a “sporadic task”. In CHESS the actual task implementation would reside in the 

container-connector level, underneath the PSM. 

If the designer specified an operation with out or in out parameters and wanted to assign 

a sporadic nature to it, that specification could not be mapped directly to RCM. 

That specification would in fact imply that the thread of control of the caller should 

block, waiting for the completion of the sporadic operation as performed by the thread 

on the callee side. At tasking level, this would imply a rendezvous (synchronization) 

between the thread of the caller and the thread of the callee. The fact is, however, that 

task synchronization cannot be treated by schedulability analysis and it is thus forbidden 

in RCM. The only way to realize out or in out semantics would be to create an assembly 

of RCM-compliant entities that engage in a collaborative call-back pattern that is 

proven to be analyzable. The definition and implementation of patterns of this kind falls 

within the charter of WP5 in strict collaboration with WP4, following on from an in-

depth analysis of the user requirements and the run-time semantics allowed by the 

computational models of interest to the industrial users in CHESS. Such patterns would 

be used first in the PIM to PSM transformations, in order that the implementation model 

considered for static analysis captures the user requirements and also complies by 

construction with the restrictions and assumptions stipulated for the analysis. The code 

level correspondents of those patterns would then be used in the PSM to code 

transformations in a manner that not only preserves the required semantic compliance 

but also actively enforces it at run time, if and where necessary. When RCM is chosen 

as the computational model for the PSM, the component model which underpins the 

PIM shall be informed of all the constraints in place to ensure the consistency of the 

target model and the design environment shall enforce them, possibly on the fly. 

1.2.2 List of consistency requirements for the Ravenscar Computational Model 

Rule Application 

level 

Kind of application 

A sporadic operation is mapped to a thread of 

control and requires a request buffer protected 

from mutual exclusion with the immediate 

ceiling protocol. A blocking operation of the 

buffer is the single point of suspension for the 

task. Client of the sporadic operation are simply 

posting their sporadic request in the protected 

buffer. 

PIM=>SAM 

and PSM=> 

source code 

Static transformation 

A protected operation is mapped to a shared 

resource protected with the immediate ceiling 

protocol. 

PIM=> SAM 

and PSM=> 

source code 

Static transformation 
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Interactions with a sporadic operation as 

destination imply an access to the protected 

resource of the sporadic task 

PIM => SAM 

and PSM => 

source code 

Static transformation 

An operation with at least one parameter cannot 

have a cyclic activation pattern 

Editor On-the-fly 

An operation with at least one out or in out 

parameter cannot have a sporadic activation 

pattern 

Editor On-the-fly 

 

2. GENERAL SOLUTIONS TO ENSURE CONSISTENCY BETWEEN MODELS AND 

EXECUTION PLATFORMS 

2.1 MODEL SPECIFICATION OF MAPPINGS FROM ANALYSIS PATTERNS TO RUN-TIME 

PATTERNS 

This approach specifies some mapping from both target languages to maintain 

consistent both transformations, and the analysis and run-time models. 

2.1.1 Model specification of mappings from schedulability analysis to violation events 

The platform must be suitable for static schedulability analysis. To meet this goal, the 

adopted computational model should follow the Ravenscar profile. The Ravenscar 

profile is an industry standard that establishes a set of restrictions to the Ada 

concurrency model, but can be implemented in other concurrent languages and real-

time kernels. The most important restrictions and assumptions include: 

 A single processor. 

 A statically defined number of threads. 

 A single activation event for each thread. The activation event may be generated 

by the passing of time (for time-triggered threads) or by a signal from either 

another thread or the environment (for sporadic threads). 

 Thread interaction only by means of shared data protected with mutual exclusion 

locks. 

This set of restrictions makes it possible to build systems that include the following kind 

of PSM components: 

 Periodic threads. 

 Sporadic threads activated by software level events. 

 Sporadic threads activated by hardware level events. 

 Protected objects implementing shared data. 
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 Protected objects used for delivering the activation event to sporadic threads 

(with just one entry private to the sporadic thread). 

These components have been proved in previous projects and industrial development to 

be expressive enough for implementing high integrity systems for critical applications 

on a single processor. 

In order to preserve the schedulability of the software – if that was asserted by prior 

analysis, the execution platform must check at run time: 

 Deadlines: Each thread must complete its work following a single activation 

before a given time, i.e., its deadline. The system must be able to detect when a 

thread overruns its deadline. This control can be achieved, for instance, by 

means of real-time (interval) timers (watchdogs). If a deadline miss occurs, an 

event must be raised and some system-level manager must perform some 

activity for the investigation of the root causes, followed by corrective actions if 

feasible. 

 Worst Case Execution Time (WCET): all threads that have passed static 

schedulability analysis have declared a worst-case duration for their longest 

possible activation. The WCET value can be determined by either static timing 

analysis on the thread’s code or by measurement-based observation of actual 

executions on the designated target. The WCET value is the time the thread 

would take to complete its longest activation without suffering any interference 

from the outside. The WCET value consequently represents a bound on the 

execution time of the thread. The platform must therefore be able to detect when 

the run-time execution of a thread exceeds its WCET bound. If a violation 

occurs, the platform must raise an event and some system-level manager shall 

contain the effects of the timing fault (for example, by preventing further 

execution of the offending thread).  

 The platform must provide mechanisms to detect, at run time, user-defined 

storage pool overflows. In this case, an exception must be raised. 

2.1.2 Model Assumptions of Deployment Determination Analysis  

The deployment determination analysis consists of three different steps: 

1. Mapping configuration 

2. Determination of scheduling priorities   

3. Configuration of FlexRay bus systems 

The analysis is based on SystemC properties and semantics. In SystemC SC_MODULs 

can be hierarchically nested. Modules can have ports and attributes. Ports can provide 

and require interfaces. The implementation of functionality can be realized by 

SC_METHODs or SC_THREADs. The interaction patters are SystemC blocking and 

non-blocking calls, events and channels (equivalent to connectors) for outside modules. 

The determination of mapping configurations aims to achieve not an optimal but 

suitable initial mapping configuration. The constraint of interest for this analysis are the 

maximum resource usage for computational and the communication infrastructure. To 
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handle complex multi-node systems the analysis does not determine exact bounds for 

the constraints but tries to estimate good results that are as close as possible to the 

reality. Therefore there are some points of interest for the execution environment.  

The execution platform can validate the determined resource usage bounds in term of 

utilization of computational hardware and communication infrastructure.  

For the analysis, all processes must be statically known. The analysis extracts 

information from given implementations or from the CHESS model and needs to know 

the number of instances to estimate the resource utilization.  

The button-up approach requires the predefined specification of input data in order to 

enable the profiling approach that enhances the results of the analysis. 

The analysis assumes that every process is activated periodically or sporadically. For 

sporadic activation the minimum inter-arrival time must be specified. 

It is forbidden to implement recursive function calls hierarchies because this is not 

analyzable by the bottom-up approach at the moment. 

It is planned to use the described schedulability analysis for the validation of the 

determined priorities. Therefore Section 2.1.1 is the reference for this part of the 

analysis. 

The execution environment can check if the calculated bus transfer latencies from the 

third step of the analysis are held by the system. 

2.1.3 Assumptions about simulation analysis to run-time patterns 

To perform the timing analysis based on a simulation approach, certain assumptions 

about the underlying platform are made. The simulation framework is built around the 

AUTOSAR model which implies certain restrictions. These restrictions must be obvious 

valid, even if the analyzed model depends on an AUTOSAR environment, which is 

executed on top of the Linux operating system. 

Compared with other analysis methods the simulation-based analysis requires much less 

rigor. This allows a timing analysis during early stages of the development process and 

a continuous refinement along the development process. For example, in an early 

development stage the execution time of a component can be roughly estimated by an 

expert, further refined and finally estimated on an instruction set simulator before 

deployed to physical hardware. The following restrictions apply to the simulation-based 

analysis approach: 

 Simulated ECUs only contain a single processor. 

 Threads are statically allocated and initialized at system start up. 

 Scheduling is restricted to fixed priority pre-emptive and EDF. The latter is a 

non standard AUTOSAR extension. 

 Threads are periodic or sporadic. 
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 Communication is restricted to automotive networks like CAN, FlexRay and 

MOST or a generic communication infrastructure. 

 No shared data and no synchronization mechanisms between threads on a single 

ECU. 

The simulation framework is build around the AUTOSAR specification making it well 

suited for the automotive domain as AUTOSAR is there the predominant environment. 

2.1.3.1 Restrictions for Thread Management 

The target platform is AUTOSAR which runs on top of a Linux system. The 

AUTOSAR services (threads, etc) are mapped to Linux equivalents. The AUTOSAR 

environment is under observation of the Linux system to maintain the following 

assumptions: 

 Static thread creation and initialization phase only during application start up. 

 The threads must not terminate. 

 The threads have a static priority, which remains unchanged. 

 Scheduling follows a FIFO-within-priority or round robin policy. 

In general, the restrictions and assumptions defined by AUTOSAR and OSEK/VDX 

apply to the execution model. 

2.1.3.2 Assumptions regarding hardware 

Regarding the hardware some assumptions are made during simulation. The obvious 

one is related to the execution time of software components. If the user models an 

execution time, it depends on a certain underlying hardware which executes the 

program code. It is not possible to provide some upper bounds on single instructions 

and catch violations of these during runtime. These violations can only be detected due 

to exceeded deadline specified by the user (see: User defined assumptions). 

The same also holds for network communications. There are assumptions about 

network latency which occur in CAN, FlexRay or MOST networks depending on the 

arbitration mechanisms and priorities. Typically it is not possible to validate these 

assumptions during run-time because the network internals are not exposed to the host 

due to communication transparency. 

As a conclusion it can be said that assumptions about hardware can’t be validated 

directly during runtime. However violated hardware assumption can appear as a 

violation of user defined assumptions. 

2.2 DEFINITION OF VIOLATION EVENTS TO PRESERVE RUN-TIME CONSISTENCY 

WITH THE ANALYSIS 

2.2.1 Scheduling Analysis: Thread management, synchronization and communication 

Threads are an essential component of a real time platform. Platform thread’s 

management must be simple, predictable and efficient. These characteristics permits a 

statically analyzable implementation of the platform, both in temporal as in resources 



 D4.3 – Predictability property-preservation needs 

26 January 2011 Version 1.1 Page 13 

Confidentiality: Public Distribution 

consumption. Furthermore, embedded real time restrictions must be considered, e.g. 

little memory availability as well as limited CPU performance. Nevertheless, the 

platform must comply with the Ravenscar profile restrictions: 

 All threads must have be created at system initialization. The dynamic creation 

of threads should be prohibited and disabled by the system. This restriction 

matches the assumption of classical schedulability analysis; otherwise the 

analysis becomes too pessimistic to be useful. 

 Threads must not terminate. This is symmetric with the restriction that threads 

are statically created. Threads may and do suspend during their lifetime, but they 

are not allowed to end. This is because schedulability analysis must be 

performed against the worst-case contention from a known thread set: this would 

be difficult to determine if threads could come and go out of existence at will. 

 Hierarchical (nested) threads are forbidden because their presence and the time 

overheads of their creation and activation complicate schedulability analysis 

very much. 

 Communication in a Ravenscar system is restricted to data-oriented 

communication only. Entry on threads is disallowed; a single entry on each 

protected object is allowed, provided that only a single thread can enqueue on it. 

This restriction improves the temporal determinism of the system, permits to 

determine the worst-case time at which the enqueued thread may be serviced, 

and simplifies the kernel implementation as well as its efficiency. 

 The system must enable the specification of the maximum amount of stack 

memory that a thread can use. Dynamic memory allocation is forbidden after 

system initialization. Only scoped or pool based memory allocation are allowed. 

The use of the general (unbounded) memory pool for dynamic storage allocation 

is forbidden because its management is not temporally deterministic (it is an NP-

problem) and has very high execution time cost. 

 Threads must be scheduled with static priorities with a FIFO-within-priority 

regime. The priority of a thread must not change at run time except for the 

bounding of priority inversion situations, by use of the immediate ceiling 

priority protocol. The use of this protocol complies with the Ravenscar profile 

restrictions and significantly simplifies schedulability analysis. Additionally, it 

is efficient and simple to implement. 

 Thread synchronization must be done through simple algorithms as, for instance, 

condition variables. The goal of this requirement is to achieve a simple kernel 

with the least possible overhead and, at the same time, to not introduce 

temporally non-deterministic operations. 

 The platform must support absolute delays. This provides a bounded-drift 

mechanism for threads to suspend. This requirement is crucial to enable the 

detection and treatment of WCET and deadlines overruns. Also, absolute delays 

are essential to build periodic and sporadic activities (i.e. with a minimum inter-

arrival time between the releases of subsequent activities). 
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 The system must support compile-time detection of potentially blocking 

operations. This feature considerably increases the temporal determinism of the 

software and simplifies temporal analysis. 

 

2.2.2 Scheduling Analysis: Time management 

Time management is essential in real-time systems. The platform must therefore 

support at least: 

 Time-zone independent, monotonic, absolute clock. 

 Temporal granularity as high as possible, so that timers can be accurate and fine-

grained as needed. High-precision timers allow the schedulability analysis to be 

much more accurate. The logical tick of the Operating System should therefore 

be as close as possible to the period of the physical clock, without this adversely 

affecting the performance of the system.  

 The overhead due to interrupt management should be as low as possible. 

2.2.3 Scheduling Analysis: Interrupt management 

Whenever a peripheral needs the intervention of the CPU, it raises an interrupt. An 

embedded system may have many peripherals, so that efficient management of 

interruptions is a key factor to performance. Moreover, interrupt management should be 

temporarily bounded and must allow the use of priorities and, also, partial or complete 

inhibition of interrupts. 

2.2.4 Simulation Analysis: Violations of User Model Assumptions 

The simulation result provides hints as to whether the user requirements concerning 

deadlines, activations, etc. can be met by the implementation. The result however 

depends on the fact that the assumptions taken are all fulfilled both during system 

generation and at run time. Some assumptions are under the control of the developer 

while other assumptions are implicit, because of the adoption of AUTOSAR and other 

are derived from the underlying hardware (like network latency). 

The developer is responsible for providing trustworthy WCET bounds for the software 

functions exercised in the system. To assert the consistency between the analyzed model 

and the execution platform, the run-time environment must provide means to time 

execution per thread and to fire an alarm if the WCET bound stipulated for that thread is 

exceeded. The following mechanisms should be provided by the run-time environment 

to detect violations of user defined assumptions: 

 Execution time measurement of software activities. 

 Event activation measurement. Events are periodic, sporadic etc. and are subject 

to jitter which is expressed as an assumption during simulation. Any violation of 

this prescription (e.g., a sporadic event occurring too often) should be detected 

and proactively prevented from occurring. 



 D4.3 – Predictability property-preservation needs 

26 January 2011 Version 1.1 Page 15 

Confidentiality: Public Distribution 

 Synchronization of events can be modelled, i.e. the occurrence of events within 

a time window. The synchronization groups events or signals and measures the 

elapsed time between the occurrence of the first and the last event (or signal). 

These measurements are usually supported by an integrated timer hardware exploited by 

the underlying operating system. However, it should be noted that the timer resolution 

should be at the same magnitude as the user specifies his expression in. The timing 

mechanism used during simulation allows an almost arbitrary timer resolution (single 

cycle) which is usually not available during run-time. 

2.2.5 Memory management 

 The system must have bounded memory usage. To this end, all the memory to 

be used must be allocated in the system initialization. Dynamic allocation from 

unbounded storage pool in execution time is forbidden. This is because the 

dynamic memory management algorithm is temporarily not deterministic. 

Therefore, it is not possible to perform a schedulability analysis on applications 

that use this type of memory. 

 The system must support volatile memory access, i.e., a method to specify that 

the variable in question may suddenly change in value.  

 The platform must support atomic memory access. In others words, it must be 

able to specify that the code generated must read and write the type or variable 

from memory atomically, i.e. as a single/non-interruptible operation. This 

requirement is essential to build communication and synchronization’s thread 

protocols. An error must be raised if that the platform can’t guarantee an atomic 

access to a variable. 

 Virtual memory should be avoided. Virtual memory algorithms are NP complete 

problems, so bounding response time of memory accesses it not guaranteed. 

3. MULTIPLATFORM CONSISTENCY SPECIFICATIONS 

This section includes general properties y structure of analysis models generators: i) 

General structures of generators, ii) integration in general modelling languages and 

transformation languages, iii) round-trip process and integration of results. 

3.1 SCHEDULING 

In this section we consider three kinds of generators: 

1. Scheduling analysis generator: the input of these generators is UML+MARTE 

models and the results are MAST models. 

2. RTSJ generators: the input of these generators are UML+MARTE models and 

the result are Java structures (classes and packages) that reuse the RTSJ library 

and executable in Jamaica VM. 

3. Ada 2005 generators: the input of these generators are UML+MARTE models 

and the results are Ada 2005 structures (tasks, packages and objects), and the 

Ravenscar profile in particular. 
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Results for scheduling analysis must be applicable to executable programs generated 

with generators introduced in 2 and 3. Ada 2005 Ravenscar and RTSJ are designed for 

the same purposes, and both specifications are designed to make scheduling analysis 

before programs execution to ensure response times. But each platform has particular 

properties. Examples include: 

 Memory management. Ada 2005 Ravenscar excludes dynamic memory 

allocation. The equivalent approach in RTSJ is allocation of objects in immortal 

memory, but this kind of restriction would make impossible to reuse multiple 

library and design patterns. Alternative solutions are scoped memories, but they 

must be used making consistent scheduling analysis. 

 Time exceptions. RTSJ supports specific approaches for handling deadline and 

worst-case execution time exceptions. Ravenscar Ada places important 

limitations on execution handlers, and the MARTE profile does not include any 

explicit notation for the description of this kind of handlers, so that the UML 

modelling concepts must be used instead. 

 Specific design patterns. RTSJ includes specific patterns such as asynchronous 

event handlers that do not have a direct equivalent in UML+MARTE or Ada 

Ravenscar. These kinds of patterns will not be considered in generators 2 and 3. 

 

Response time of code generated in generator 2 and executed with Jamaica VM must be 

consistent with results of MAST scheduling analysis. And the same kind of consistency 

should be applicable for Ada 2005 and MAST. All three generators must be consistent, 

and they must be designed and developed taking into account the design patterns of 

target models/code generated in the other two. UML+MARTE semantics must be the 

same for all three generators, the code generated in 2 and 3 generators must be 

consistent with scheduling analysis generator. 

4. PLATFORM SPECIFIC CONSISTENCY SPECIFICATIONS  

This section introduces the analysis based on code generated. This sections includes 

details about how to reuse the analysis results in source models, and how to check 

consistency of models and analysis results 

4.1 ADA RAVENSCAR PROFILE/LWCCM PLATFORM 

4.1.1 Task management, synchronization and communication 

Ada 2005 has direct support for Ravenscar profile by means of a dedicated pragma 

Profile. When using this compiler directive, the compiler ensures, among others: 

 All tasks are statically declared and, consequently, are known at compilation 

time. 

 A Program_Error exception is raised if any task terminates. It also rejects code 

with abort statement. 

 All tasks are declared at library level, so, a hierarchy of tasks is impossible. A 

compilation error is raised otherwise. 

 Entries and accepts can only have one task queued. Otherwise a Program_Error 

exception is raised. Requeue statement is forbidden as well as select statement 

since task’s queues are not allowed.  



 D4.3 – Predictability property-preservation needs 

26 January 2011 Version 1.1 Page 17 

Confidentiality: Public Distribution 

 Entries barriers must be simple Boolean expression. This simplifies the 

evaluation of entries and improves the efficiency of the program. 

 Synchronization and communication between tasks are performed through 

protected objects, which are a high level, safe an efficient mechanism to provide 

mutual exclusion access to data. 

 Pragma Detect_Blocking is used, which provides detection of potentially 

blocking operations at compilation time.  

 System scheduler is established as First Input First Output within priorities  

 Only absolute delays (delay until statement) are used. 

Moreover, Ada supports: 

 pragma Storage_Size that allows defining the maximum amount of stack 

memory that a task can use.  Moreover, Ada support definition of size fixed user 

defined storage pools in which is allowed to use dynamic memory. 

 pragma Priority in the task specifications which permits to establish the priority 

of the task at compilation time. Ada also provides pragma Locking_Policy. With 

this pragma is possible to select which policy will be used in the interactions 

between priority task scheduling and protected object ceilings. 

4.1.2 Time management 

ORK+ provides a wide support for time management: 

 In ORK+, time is represented internally as a 64-bit integer number of ticks. 

Therefore, the interval of time values that can be represented in this way is 

approximately -23360..+23360 years. 

 LEON2 provides two integer 24 bits timers. With one of them, ORK+ provides 

the basis for a high-resolution clock used to provide a time zone independent, 

monotonically increasing, real time clock (called “Real time clock”). The other 

timer is used to provide a high-resolution timer (General Purpose Timer, in 

ORK+) which is used to provide the required support for precise alarm handling. 

 In order to provide a high resolution clock, the least significant part of the clock 

is held in the `Real Time Clock hardware register', and the Real Time Clock is 

programmed to interrupt periodically, updating the most significant part of the 

clock. As a result, the clock tick is equal to the period of the input signal of the 

downcounter divided by the prescaler. That is the processor clock period divided 

by 4 in the current implementation. The clock is a count of ticks and is not 

synchronized with external sources. As a result, the clock does not jump. 

 The overhead due to the interruptions management must be as low as possible 

and bounded. In ORK+ for 50 MHz LEON2 this overhead is of 4756 processor 

cycles. 

 Clock function must have bounded execution time. In ORK+ the Clock function 

takes 522 processor’s cycles. 
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 In one hand, each task has attached its execution time timer. This counter is 

incremented only when a task is running. In the other hand, one task could have 

multiple real-time timers associated. However, this feature is not useful in 

Ravenscar because select statement is forbidden; so, only one real-time timer is 

attached to a task. 

 All timing events (pending delays) are queued in a single queue which is ordered 

by absolute expiration time. A timing event can’t be removed from the queue 

before the delay expires. This helps to keep simple the implementation of the 

platform. 

4.1.3 Interrupt management 

The interrupts management in Ada is provided by means of protected procedures, which 

ensures mutual exclusion access and introduces a very low overhead in the system 

performance. 

4.1.4 Memory management 

 Ada supports definition of size fixed user defined storage pools in which is 

allowed to use dynamic memory. Ada storage pools can be completely 

customized by the user to adapt it to his requirements. 

 Ada provides volatile variables with pragma Volatile. When this pragma is used, 

the compiler must suppress any optimizations that would interfere with the 

correct reading of the volatile variables. For example, two successive readings of 

the same variable cannot be optimized to just one or reordered. 

 In Ada is possible to declare a variable as atomic with the pragma Atomic. 

Atomic implies volatile access, however, since not all types can be access as 

atomic, the compiler must reject the code if the atomic access of a concrete type 

it is not supported. When a variable is declared as atomic, the compiler ensures 

that: 

o The architecture guarantees atomic memory loads and stores, 

o Reordering or suppressing redundant accesses to the object optimizations 

are disallowed. 

4.2 LINUX/OSE PLATFORM 

4.2.1 Linux 

4.2.1.1 Task management, synchronization and communication 

 For real-time systems Linux provides a FIFO and a round robin scheduler 

(SCHED_FIFO, SCHED_RR) with static real-time priorities. Threads can only 

be preempted by threads with a higher priority or additionally due to expired 

time slice (SCHED_RR). To prevent priority inversion the PREEMPT_RT patch 

introduces priority inheritance mutexes (rt_mutex). 
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 In general threads can be created dynamically during run-time. However, it is 

possible to define limits of how many threads can be created. Analysis assumes 

the infinite execution threads where there are not errors. 

 Besides mutexes Linux support futexes (fast userspace mutual exclusion), which 

are reducing the amount of expensive system calls because most checks are done 

in userspace. 

4.2.1.2 Time management 

 Since Linux kernel 2.6.16 the hrtimer based infrastructure is included in the 

mainline. This subsystem offers high resolution timers which are independent of 

ticks and based on nanoseconds. The time value is stored as plain nanoseconds 

on 64 bit CPUs and as a seconds, nanoseconds pair on 32 bit CPUs. 

 Internally a list of next timer events is kept which are managed via a rb-tree data 

structure. This decouples the timer system from a fixed system tick (jiffies). 

 The hrtimer system can be used in kernel modules (e.g. real-time drivers) direct-

ly and also some user space calls are implemented using hrtimer like nanosleep, 

POSIX timers or itimer. For other timer based services the ticks are emulated by 

hrtimer. 

4.2.1.3 Interruptions management 

 To reduce interrupt latencies the PREEMPT_RT patch introduces threaded inter-

rupt handlers. This allows assigning real-time priorities to interrupt handler 

which are executed as processes. Because the interrupts are executed in process 

context, they can also be pre-empted by regular processes with higher priorities. 

4.2.1.4 Memory management 

 Linux supports the use of virtual memory. To prevent that memory of real-time 

applications is swapped out, the mlockall() call can be used. 

 Resource limits can be enforced, limiting the amount of virtual memory, data 

segment and stack size. 

 Applications can allocate dynamic memory via calling malloc().Due to its im-

plementation, it can’t be used on hard real-time systems. Application specific 

memory allocators can be implemented which are using statically allocated 

memory or during startup allocated dynamic memory. 

4.2.2 OSE 

4.2.2.1 Task management, synchronization and communication 

 The core concepts in OSE are processes and signals. Inter process 

synchronization and communication between processes is done through signals 

(preferably) that processes send and receive (although use of semaphores is 

possible and supported, but it is not a recommended approach).  So sharing 
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resources is not a recommended and commonly used method in OSE which 

leads to better reliability and stability of the system.  

 Signals can be used to implement other primitives such as semaphores or 

monitors. 

 The fundamental building block in OSE is Process. An OSE process is actually a 

thread with some special features. An OSE process can be dynamic or static and 

of type interrupt, timer-interrupt, prioritized, background or phantom.  

 Static processes are configured at compile time and are created at the start of the 

system. It is not allowed to kill a static process. 

 In configuring static processes, it is possible to define parameters such as 

process name, stack size, priority, block to which the process belongs and 

process redirection table. The process redirection table causes the signals sent to 

that process to be forwarded to another processes. Since process redirection 

complicates analysis, it can be avoided in CHESS transformations.  

 Creation of dynamic OSE processes can be selectively not used.  

 It is possible to group and assign several processes to a process block. Each 

block can have its own memory pool.  

 It is possible to stop and start a process. The kernel keeps a record of how many 

times a process has been stopped. A process block can also be stopped. (Only 

prioritized, background and timer-interrupt processes can be stopped. The start 

and stop calls have no effect on process types that cannot be stopped).  Stopping 

a timer-interrupt process means that it will no longer be scheduled to run at its 

specified time interval. 

 

 Execution of a process can also be delayed using Delay system call. Delay is not 

available for interrupt processes.  

 Prioritized processes are implemented as infinite loops. 

 Phantom processes contain no code and only a signal redirection table and used 

as a logical channel when communicating across target boundaries (images of a 

remote process).  

 Response-time critical tasks can be defined as interrupt processes.  

 Background processes have lowest priority level and used to spend leftover of 

CPU time 

 In waiting for receiving a signal, it is possible to use receive_w_tmo (Receive 

with timeout) which causes the caller process to be suspended only for the 

duration specified and continue after expiration of that time.  

 It is possible for an interrupt process to see why it was scheduled (using 

wake_up()). It can be due to hardware interrupt, invoked by a signal or its fast 

semaphore (each process has one) is signalled.  
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 A load module in OSE is a file that includes a program’s code and data content, 

and information about how the code and data shall be loaded. This concept can 

be used as an option in mapping and deployment of components from the 

CHESS model.  

 In OSE, the Main process is responsible for starting all static processes and 

System Daemon is used for creating and killing processes and blocks. It is 

possible to change the priorities for these two processes if needed.  

 Create handlers are called each time a process is created and there can be several 

create handlers which in this case will run in undefined order when a process is 

created. This is important to note for predictability of any mechanism that is 

built using this feature (this also applies to swap-in handlers). 

4.2.2.2 Time management 

 Real Time Clock (RTC) is a component
1
 in OSE to achieve absolute timing 

requirements. It is a prioritized process which sets and keeps absolute date and 

time, generates alarm signals at requested date and time, read the time with the 

resolution of the operating system, and can be used for converting between 

different representation of dates and times. 

 Time Out Server (TOSV) is a component that allows the user to handle very 

short duration time intervals. The timer resolution is in milliseconds (although 

the resolution can be limited to the resolution of the system clock ticks) and up 

to 50 hours.  

 OSTIME (a time given in milliseconds) and OSTICK (Time as reported by 

get_systime() and get_ticks()) defined types in OSE for timing purposes are 

declared as unsigned long.  

 It is possible to define the time between each system tick using 

SYSTEM_TIMER configuration parameter. It is target independent and is in 

milliseconds.  

 If an internal timer is available on the CPU chip, it can be used as a system tick 

timer. The frequency driving the internal timer should be specified.  E.g. 

krn/internal_timer=16500 krn/internal_timer_vector=255 

4.2.2.3 Interrupt management 

 There are three ways for triggering of an interrupt: hardware interrupt, time 

interrupt and software event (signal of fast semaphore).  

 Among other characteristics (e.g. name) the priority, stacksize, and blockname 

of an interrupt process can also be defined. 

4.2.2.4 Memory management 

 Basic type of memory area in OSE is pool. There is always one global memory 

pool which is the system pool. System processes and data reside in this pool. 

                                                           
1
 By term component here we simply mean a part of the OS architecture. 
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 It is possible to create local pools. Pools can be created dynamically or statically. 

 In configuring the system pool, different buffer sizes (e.g. for allocating to 

signals) and stack sizes are defined. 

 A block in OSE may also have its own memory pool. 

 It is possible to group one or more memory pools into a domain as mechanism 

for memory protection between processes.  

 Memory is allocated and returned after use to a common memory pool. 

 In OSE a heap can be created or deleted dynamically. 

 Concept of region: every accessible logical address in a memory-protected 

system must belong to a region. A region is either static of dynamic. Accessing 

an address outside a region leads to an access violation interrupt and eventually 

an OSE error. It is possible to define R/W/X (execute) permission per regions. 

 Free heap buffers are stored in lists according to size. If a buffer of correct size is 

found in a free, it is removed from the list, initialized and returned to the 

application requesting memory. If no such buffer is found, the heap locates the 

closest higher slot with non-empty free-list and splits the first buffer from that 

list.  Maximum time it takes to allocate a buffer from the heap is the time it takes 

to split buffers all the way from largest size down to the smallest size handled by 

the heap 23 steps.  

 OSE supports three different mappings of memory; i.e. physical vs logical 

addresses: Single Address Space Equal (SASE, logical addresses are equal to 

physical), Single Address Space (SAS) and Multiple Address Space (MAS). 

 Heap memory in OSE has low overhead of 9/17 bytes (without/with file and line 

info) 

4.3 RTSJ PLATFORM 

4.3.1 Task management, synchronization and communication 

 The RTSJ allows dynamic thread creation and has no notion of critical time for 

static thread creation. Therefore, static thread creation has to be emulated. 

Emulation of static thread creation can be achieved by an initialization thread 

that gets started from the program's main method, creates and starts all threads of 

the system, and then terminates. Dynamic thread creation must be disallowed, 

except in the initialization thread.  It would be possible to customize the 

JamaicaVM for the CHESS project to monitor thread creation and throw a 

runtime exception if applications attempt to create a thread from outside the 

initialization thread. 

 In the RTSJ, threads are allowed to terminate. To adhere to the requirement that 

all threads are non-terminating, code generators must only generate non-

terminating threads. This can, for instance, be achieved by only generating 
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threads that are instances of the class NonTerminatingThread as sketched in 

Figure 4.3.1. 

 

 

 

 

 

 

 

 

 

 In Java, shared resources are protected by object monitors.  Conditional 

synchronization is supported through the primitives wait() and notify(). Multiple 

waiters for the same object monitor are allowed. It is, however, not hard to 

implement a wait-method that throws an exception when called while another 

thread is already waiting to enter the same monitor. To this end, a counter 

variable can be used as sketched in Figure 4.3.2.  

 

 While the RTSJ does not address the configuration of stack sizes, the 

JamaicaVM allows configuring maximal stack sizes for threads.  Java specifies 

that a StackOverflowError has to be thrown when stack size limits are exceeded. 

The RTSJ makes it possible to avoid garbage-collected heap memory, using 

immortal memory and scoped memory instead. 

 The RTSJ requires a base scheduler that is priority-based. While arbitrary 

dynamic priority changes are allowed, this feature can be avoided. The RTSJ 

public abstract class NonTerminatingThread extends  RealtimeThread { 
 

   ...  // constructors as in class RealtimeThread 

  

   final public void run() { 

     body(); 

     throw new RuntimeException(“Illegal termination of body().”); 

   } 

          

   /** 

    * The actual task body, to be implemented by subclasses. 

    * Must not terminate. 

    */       

   abstract public void body(); 

} 

            

Figure 4.3.1: RTSJ: Emulating non-terminating threads 

public abstract class ObjectWithAtMostOneWaiter { 

 

   abstract boolean condition(); 

 

   private waiters = 0; // Invariant: waiters == 0 || waiters == 1  

 

   public synchronized void waitAtMostOne() { 

     if (waiters == 1) { 

       throw new RuntimException(“Illegal call to waitAtMostOne().”); 

     } 

     waiters++; 

     while (!condition()) { wait(); } 

     waiters--;  

   }  

} 

 

Figure 4.3.2: RTSJ: Emulating condition synchronization with at most one waiter 
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specifies the priority ceiling protocol as an optional VM feature. The 

JamaicaVM supports the priority ceiling protocol. 

 For thread synchronization, Java provides the primitives wait and notify.  These 

can be used for implementing condition variables. Code generators must ensure 

that synchronization patterns that cannot be analysed are avoided. 

 In the RTSJ, absolute delays are supported through the Timer class.  Timers 

trigger events at specified times and allow binding asynchronous event handlers 

to these events. The Timer class has two subclasses: OneShotTimer and 

PeriodicTimer. A one-shot timer is associated with a single release time, which 

can be either absolute or relative. In order to delay an action by an absolute time, 

one can create a one-shot timer with an absolute release time and bind to it the 

action as an asynchronous event handler. A periodic timer is associated with a 

single start time, which is either absolute or relative, and with a period, which is 

relative. An absolute time can also be used to specify the start time of the first 

release of a periodic thread. 

  Java and the RTSJ specify which built-in operations are potentially blocking. 

The most important ones are calls of synchronized methods, entries to 

synchronized blocks, calls to Thread.wait() and calls to Thread.join().  There is 

no built-in annotation for potentially blocking user-written methods. However, 

such an annotation could be defined in terms of Java's generic annotation syntax. 

While Java compilers do not detect potentially blocking methods, it would not 

be hard to instrument Veriflux to this end, based on whether methods may 

(transitively) call one of Java's built-in blocking methods. 

 The RTSJ does not specify a scheduling order for schedulable objects of equal 

priority. However, the base scheduler of the JamaicaVM schedules such objects 

in FIFO order. 

4.3.2 Time management 

 The RTSJ requires a system real-time clock that is monotonically non-

decreasing and measures time with respect to some epoch (e.g., 1 January 1970, 

00:00:00, or system start-up time). Time values are represented by a 64-bits 

millisecond component and a 32-bits nanosecond component. The system real-

time clock need not be synchronized with the external world.   

 According to the RTSJ, the system real-time clock must progress as uniformly 

and be as accurate as allowed by the underlying hardware. This implies for 

instance, that it must not stall and must not be subject to leap ticks. 

4.3.3 Interrupt management 

 Interrupts from peripherals are not directly addressed by the RTSJ. However, the 

RTSJ specifies cost monitoring and enforcement, which can be used to deal with 

rare cost overruns due to interrupts. 

4.3.4 Memory management 

 The RTSJ permits dynamic memory allocation, including dynamic object 

allocation on the garbage-collected heap, in scoped memory areas and in 
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immortal memory, and dynamic creation of new scoped memory areas. In order 

to establish within an initialization phase a bound on the total memory demand, 

one can implement an initialization thread that allocates all objects in immortal 

memory and all scoped memory areas that will be needed throughout the 

execution, so that further object allocation in immortal memory and further 

creation of scoped memory areas can be avoid thereafter. Dynamic object 

allocation within scoped memory areas must still be allowed after the 

initialization phase, because Java does not permit passing objects or arrays on 

the call stack. An upper bound on the overall memory demand is determined by 

the sum of the sizes of the scoped memory areas, plus the size of immortal 

memory, plus the sum of the stacks sizes for each thread. 

 Java allows  declaring variables as volatile. Thread-shared variables that 

are accessed without synchronization should always be declared volatile, 

because otherwise program behaviour is hardly predictable. The Java Language 

Specification guarantees that a thread T observing volatile variables written by 

another thread S, sees their values in an order that is consistent with the order 

that S  has written them according to the program text. On multi-processor 

implementations, the same is not necessarily the case for non-volatile variables. 

 The Java Language Specification requires that all variable accesses are atomic, 

except from accesses to variables of type long or double, which require two 

memory accesses. Accesses to longs and doubles should therefore always be 

synchronized. 

 The RTSJ does not require that RTSJ-compliant VMs must disable or avoid 

virtual memory. The RTSJ offers interfaces for programmers to directly access 

the kinds of memory that a particular hardware offers. 
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APPENDIX A. REQUIREMENTS ON PLATFORMS FOR THE CONSISTENCY OF ANALYSIS 

METHODS 
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  General requirements for of analysis on platforms       

1 A cyclic operation is mapped to a thread of control       

2 

A sporadic operation is mapped to a thread of control and re-
quires a request buffer protected from mutual exclusion with 
the immediate ceiling protocol. A blocking operation of the 
buffer is the single point of suspension for the task. Client of the 
sporadic operation are simply posting their sporadic request in 
the protected buffer. 

General 
Sporadic 
Events 

Scheduling 

3 
A protected operation is mapped to a shared resource pro-
tected with the immediate ceiling protocol. 

General 
Protected 
Resource 

Scheduling 

4 
Interactions with a sporadic operation as destination imply an 
access to the protected resource of the sporadic task 

General 
Sporadic 
Events 

Scheduling 

5 
An operation with at least one parameter cannot have a cyclic 
activation pattern 

General 
Periodic 
Events 

Scheduling 

6 
An operation with at least one out or in out parameter cannot 
have a sporadic activation pattern 

General 
Sporadic 
Events 

Scheduling 

7 Static creation of threads General Threads Scheduling 

8 Threads must not finish General Threads Scheduling 

9 

A single invocation event for each thread. The invocation event 
may be generated by the passing of time (for time-triggered 
threads) or by a signal from either another thread or the envi-
ronment (for sporadic threads). 

General Threads Scheduling 

10 
Thread interaction only by means of shared data with mutually 
exclusive access. 

General Threads Scheduling 

11 

Deadlines Checking: Each thread must have its work done be-
fore of a given time, i.e., its deadline. The system must be able 
to detect when a thread is overrunning its deadline. This can be 
achieved, for instance, by means of real time timers. If this oc-
curs, an exception must be raised and the thread execution 
must be stopped 

General 
Platform 
Check 

Scheduling 

12 

Worst Case Execution Time (WCET) Checking: As schedulable 
software, all function executions must be bounded and, hence, 
must have and WCET. The platform must be able to detect 
when a thread is overran. 

General 
Platform 
Check 

Scheduling 
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13 
Platform must provide a mechanism to detect, in run time, user 
defined storage pool overflows. In this case, an exception must 
be raised. 

General 
Platform 
Check 

Scheduling 

14 Simulated ECUs only contain a single processor. General 
Computing 
Resource 

Simulation 

15 Threads are statically allocated and initialized during startup. General Threads Simulation 

16 
Scheduling is restricted to fixed priority preemptive and EDF. 
The later is a non standard AUTOSAR extension. 

General Threads Simulation 

17 Threads are periodic or sporadic. General Threads Simulation 

18 
Communication is restricted to automotive networks like CAN, 
FlexRay and MOST or a generic communication infrastructure. 

General Threads Simulation 

19 
No shared data and no synchronization mechanisms between 
threads on a single ECU. 

General Threads Simulation 

20 The threads must not finish. 
AUTOSAR 
Linux 

Threads Simulation 

21 The threads have a static priority, which remain unchanged 
AUTOSAR 
Linux 

Threads Simulation 

22 Scheduling in FIFO or round robin manner 
AUTOSAR 
Linux 

Threads Simulation 

23 
Hierarchical (nested) threads are forbidden because it compli-
cates schedulability static analyses 

General Threads Scheduling 

24 
Thread queues are prohibited; therefore, having more than one 
thread waiting on a shared resource or for another thread is not 
allowed.  

General Threads Scheduling 

25 
The system must allow defining the maximum amount of stack 
memory that a thread can use 

General Threads Scheduling 

26 Dynamic memory allocation is forbidden 
Ada 
Ravenscar 
Profile 

Threads Scheduling 

27 
Only scoped, inmortal or pool based memory allocation are 
allowed. The use of the general (unbounded) memory pool for 
dynamic storage allocation is forbidden  

Java-RTSJ Threads Scheduling 

28 

Threads must support static priorities. The priority of a thread 
must not change except to avoid priority inversion, in which 
case, only the use of immediate ceiling priority protocol is al-
lowed 

General Threads Scheduling 

29 
Thread synchronization must be done through simple algo-
rithms as, for instance, condition variables 

General Threads Scheduling 

30 
The platform must support absolute delays. This provides a 
mechanism to suspend a thread leaving the processor free for 
others threads 

General Threads Scheduling 

31 
The system must support potentially blocking operations detec-
tion at compilation time 

General Threads Scheduling 

32 
The system scheduler must be First Input First Output within 
priorities 

General Threads Scheduling 
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33 
Time zone independent, monotonically increasing, absolute 
clock 

General Time Scheduling 

34 
The temporal granularity of the system should be as high as 
possible, so that timers can be established as accurately as pos-
sible 

General Time Scheduling 

35 
The overhead due to the interruptions management must be as 
low as possible 

General Time Scheduling 

36 
Interrupt’s management should be temporarily bounded and 
must allow the use of priorities and, also, partial or complete 
inhibition of interruptions 

General 
Interruption 
Handlers 

Scheduling 

37 Execution time measurement of modeled components General 
Platform 
Check 

Simulation 

38 
Event activation measurement. Events are periodic, sporadic 
etc. and are subject to jitter which is expressed as an assump-
tion during simulation 

General 
Platform 
Check 

Simulation 

39 

Synchronization of events can be modeled, i.e. the occurrence 
of events within a time window. The synchronization groups 
events or signals and measures the elapsed time between the 
occurrence of the first and the last event (or signal). 

General 
Platform 
Check 

Simulation 

40 
The system must have bounded memory usage. To this end, all 
the memory to be used must be allocated in the system initiali-
zation 

General Memory Scheduling 

41 
System must support volatile memory access, i.e., a method to 
specify that the variable in question may suddenly change in 
value 

General Memory Scheduling 

42 

The platform must support atomic memory access. In others 
words, it must be able to specify that the code generated must 
read and write the type or variable from memory atomically, i.e. 
as a single/non-interruptible operation 

General Memory Scheduling 

43 Virtual memory mechanism should be avoided       

  Ada-2005 Ravenscarn platform       

44 
All tasks are statically declared and, consequently, are known at 
compilation time 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

45 A Program_Error exception is raised if any task finishes 
Ada 
Ravenscar 
Profile 

Tasks Scheduling 

46 
All tasks are declared at library level, so, a hierarchy of tasks is 
impossible 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

47 Entries and accepts can only have one task queued 
Ada 
Ravenscar 
Profile 

Tasks Scheduling 
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48 Entries barriers must be simple Boolean expression 
Ada 
Ravenscar 
Profile 

Tasks Scheduling 

49 

Synchronization and communication between tasks are per-
formed through protected objects, which are a high level, safe 
an efficient mechanism to provide mutual exclusion access to 
data 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

50 
Pragma Detect_Blocking is used, which provides detection of 
potentially blocking operations at compilation time 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

51 
System scheduler is established as First Input First Output 
within priorities 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

52 Only absolute delays (delay until statement) are used 
Ada 
Ravenscar 
Profile 

Tasks Scheduling 

53 
Ada provides pragma Storage_Size that allows defining the 
maximum amount of stack memory that a task can use 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

54 
Ada provides pragma Priority in the task specifications which 
permits to establish the priority of the task at compilation time 

Ada 
Ravenscar 
Profile 

Tasks Scheduling 

55 
In ORK+, time is represented internally as a 64-bit integer num-
ber of ticks. Therefore, the interval of time values that can be 
represented in this way is approximately -23360..+23360 years 

Ada 
Ravenscar 
Profile 

Time Scheduling 

56 

LEON2 provides two integer 24 bits timers. With one of them, 
ORK+ provides the basis for a high resolution clock used to pro-
vide a time zone independent, monotonically increasing, real 
time clock (called “Real time clock”) 

Ada 
Ravenscar 
Profile 

Time Scheduling 

57 

In order to provide a high resolution clock, the least significant 
part of the clock is held in the `Real Time Clock hardware regis-
ter', and the Real Time Clock is programmed to interrupt peri-
odically, updating the most significant part of the clock 

Ada 
Ravenscar 
Profile 

Time Scheduling 

58 
The overhead due to the interruptions management must be as 
low as possible and bounded. In ORK+ for 50 MHz LEON2 this 
overhead is of 4756 processor cycles 

Ada 
Ravenscar 
Profile 

Time Scheduling 

59 
Clock function must have bounded execution time. In ORK+ the 
Clock function takes 522 processor’s cycles 

Ada 
Ravenscar 
Profile 

Time Scheduling 

60 
In one hand, each task has attached its execution time timer. 
This counter is incremented only when a task is running 

Ada 
Ravenscar 
Profile 

Time Scheduling 
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61 
All timing events (pending delays) are queued in a single queue 
which is ordered by absolute expiration time. 

Ada 
Ravenscar 
Profile 

Time Scheduling 

62 
Ada support definition of size fixed user defined storage pools 
in which is allowed to use dynamic memory 

Ada 
Ravenscar 
Profile 

Memory Scheduling 

63 

Ada provides volatile variables with pragma Volatile. When this 
pragma is used, the compiler must suppress any optimizations 
that would interfere with the correct reading of the volatile 
variables 

Ada 
Ravenscar 
Profile 

Memory Scheduling 

64 
In Ada is possible to declare a variable as atomic with the 
pragma Atomic 

Ada 
Ravenscar 
Profile 

Memory Scheduling 

  Java-RTSJ platform       

65 
The RTSJ allows dynamic thread creation and has no notion of 
critical time for static thread creation. Therefore, static thread 
creation has to be emulated 

Java-RTSJ Threads Scheduling 

66 
In the RTSJ, threads are allowed to terminate. To adhere to the 
requirement that all threads are non-terminating 

Java-RTSJ Threads Scheduling 

67 In Java, shared resources are protected by object monitors Java-RTSJ Threads Scheduling 

68 
While the RTSJ does not address the configuration of stack 
sizes, the JamaicaVM allows to configure maximal stack sizes for 
threads 

Java-RTSJ Threads Scheduling 

69 
 The RTSJ requires a base scheduler that is priority-based. While 
arbitrary dynamic priority changes are allowed, this feature can 
be avoided. 

Java-RTSJ Threads Scheduling 

70 
For thread synchronization, Java provides the primitives wait 
and notify.  These can be used for implementing condition vari-
ables 

Java-RTSJ Threads Scheduling 

71 
In the RTSJ, absolute delays are supported through the Timer 
class 

Java-RTSJ Time Scheduling 

72 
Java and the RTSJ specify which built-in operations are poten-
tially blocking 

Java-RTSJ Threads Scheduling 

73 
The RTSJ does not specify a scheduling order for schedulable 
objects of equal priority. However, the base scheduler of the 
JamaicaVM schedules such objects in FIFO order 

Java-RTSJ Time Scheduling 

74 
The RTSJ requires a system real-time clock that is monotonically 
non-decreasing and measures time with respect to some epoch 

Java-RTSJ Time Scheduling 

75 
According to the RTSJ, the system real-time clock must progress 
as uniformly and be as accurate as allowed by the underlying 
hardware 

Java-RTSJ Time Scheduling 

76 

Interrupts from peripherals are not directly addressed by the 
RTSJ. However, the RTSJ specifies cost monitoring and enforce-
ment, which can be used to deal with rare cost overruns due to 
interrupts 

Java-RTSJ Threads Scheduling 
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77 

The RTSJ permits dynamic memory allocation, including dy-
namic object allocation on the garbage-collected heap and in 
immortal memory, and dynamic creation of new scoped mem-
ory areas 

Java-RTSJ Memory Scheduling 

78 Java allows to declare variables as volatile Java-RTSJ Memory Scheduling 

79 
The Java Language Specification requires that all variable ac-
cesses are atomic, except from accesses to variables of type 
long or double, which require two memory accesses 

Java-RTSJ Memory Scheduling 

80 

The RTSJ does not require that RTSJ-compliant VMs must dis-
able or avoid virtual memory. The RTSJ offers interfaces for 
programmers to directly access the kinds of memory that a par-
ticular hardware offers 

Java-RTSJ Memory Scheduling 

          

 


