MADES: Embedded Systems Engineering Approach in the Avionics Domain

Alessandra Bagnato
Txt e-solutions – Corporate Research Division
Paris, 15th June 2010
Project data

- **Project type:** Collaborative Project (STREP)
- **Duration:** 30 months
- **Project start:** February 1, 2010
- **Project end:** July 31, 2012
- **Objective:** Embedded Systems Design

Project web site

http://www.mades-project.org/

MADES

Model-based methods and tools for Avionics and surveillance embedded Systems
MADES Consortium

- TXT e-solutions SPA (Italy)
- SOFTEAM (France)
- University of York (United Kingdom)
- Politecnico di Milano (Italy)
- The Open Group (United Kingdom)
- EADS Deutschland (Germany)
MADES, scientific and Technological objectives

- Development of modelling languages, and dedicated tools, focusing on avionic and surveillance systems, based on existing generic RTES modelling languages;
- Development of advanced model-based verification and simulation methods and tools for RTES;
- Development of advanced model-based code generation methods and tools for RTES;
- Integration of developed MDE in a single framework of the seamless modelling, validation, and code generation of avionic solutions;
Main issues highlighted by the project

• Model-driven technologies to improve current practices in the development of embedded systems with focus on avionics and surveillance embedded systems industries (Txt e-solutions and EADS).

• Focus on customization of MARTE, the OMG UML profile dedicated to Modelling and Analysis of Real time and Embedded Systems
 • Extension with means for verification, simulation and generation
 • Dedicated implementation for methodological support
Main issues highlighted by the project

- MADES MARTE Component Repository to allow development by assembly of components
 - Need common repository for component libraries
 - Web-based repository
 - Storing component models and documentation, versioning
- Automated formal verification techniques to efficiently check system properties, including temporal ones.
- Integration of state of the art industrial simulation tools like Matlab/Simulink or Modelica/Dymola/OpenModelica in the project formal framework supporting suitable subsets of UML/MARTE.
- New transformations and code generators to enable developers to virtualise complex hardware platforms while providing rich traceability support linked to the MADES verification and simulation technologies.
Main issues highlighted by the project

Integration of developed MDE in a single framework of the seamless modelling, validation, and code generation of avionic solutions;
Verification Integration

Modelio → XMI → Epsilon → ZOT model → ZOT

Format: Modelio ids + text description

EMF UML2 + annotations

New model

Report

Counterexamples
Code Generation

- Modelio
- XMI
- Epsilon
- Agnostic (Java), C++, C#
- Virtual Platform Generator
- Platform model
- Fn accelerators Libraries
- Platform (Java), C++, C#
- VHDL

SystemC, VHDL
Industrial Relevance

• Retargeting effort
 – effort required to migrate an application from one processor architecture to another: this will be reduced as a consequence of the analysis being carried out on abstract but precise and formalized models;

• Reusability
 – number of software components that can be taken from one application development project to another: this will be fostered by the ability, provided by the developed tools, to state explicitly the assumptions of the various components concerning their interaction with other components and the environment;

• Verification
 – number of errors corrected earlier in the development process through new model verification methods: this will come as a benefit of the precise semantics assigned to the UML/MARTE models and of analysis carried out on such models by means of the developed model-checking tools.
Case Studies under definition..

- **A ground based radar processing unit**, where MADES tools will be used for the development of a system consisting of multiple multi-core microprocessors and FPGAs.

- **An on board radar control unit** where the MADES tools will be used to develop the C/C++ based communication processor and an user interface developed in C# for management of the radar operations modes and the visualization of geo-referenced graphical maps for the positioning of targets.
Thanks!

Alessandra Bagnato
Corporate Research Division - TXT e-solutions S.p.A
Via al Ponte Reale 5 - Genova - Italy
Phone: +39 0225771 725
Fax: +39 0225771 738
Mobile: +39 348 6913749
mail. alessandra.bagnato@txt.it

Project web site
http://www.mades-project.org/