Detection of titanium nanoparticles in the hair shafts of a patient with frontal fibrosing alopecia.

Florence Brunet-Possenti¹, Lydia Deschamps², Hester Colbec³, Andrea Somogyi⁴, Kadda Medjoubi⁴, Dominique Bazin⁵, Vincent Descamps¹

¹ Department of Dermatology, Bichat Hospital, HUPNVS, AP-HP, Paris, Paris 7 University, France
² Department of Pathology, Bichat Hospital, HUPNVS, AP-HP, Paris, France
³ Department of Dermatology, Rothschild Hospital, AP-HP, Paris, France
⁴ Synchrotron SOLEIL, Gif-sur-Yvette, France
⁵ LCMCP-UPMC, College de France, Paris, France

Corresponding author: Florence Brunet-Possenti
Department of Dermatology
Bichat Hospital, HUPNVS, APHP
46 rue Henri Huchard, 750718 Paris, France
Telephone: 33 140257300
Fax: 33 140257303
Email: forence.brunet-possenti@aphp.fr

Key words: frontal fibrosing alopecia, titanium, nanoparticles

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jdv.14967

This article is protected by copyright. All rights reserved.
Frontal fibrosing alopecia (FFA) is a lymphocyte-mediated primary cicatricial alopecia closely related to lichen planopilaris1. Over time, the number of FFA reports has increased continuously, suggesting the implication of yet unidentified environmental factors. Several studies based on questionnaires have pointed out that leave-on facial skin care products, especially sunscreens, could be implicated in FFA2. Here we report the detection of titanium dioxide (TiO\textsubscript{2}) along the hair shafts of a patient presenting FFA.

The patient was a 73-year-old woman who presented with typical FFA characterized by a frontotemporal hairline regression and eyebrow loss (Fig. 1a, b). There was no manifestation of nail, mucosal or cutaneous lichen planus. A biopsy was performed in an active area of the temporal frontline, showing ostial hyperkeratosis and perifollicular fibrosis with gigantocellular reaction, as well as a reduced number of hair follicles. Her past medical history was unremarkable, but she reported the application on a daily basis of a sunscreen containing nanoparticles of TiO\textsubscript{2} during the last ten years in order to prevent skin photoaging.

A physicochemical characterization of the patient’s hair was performed with Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDX). Two plucked hairs were analyzed using SEM, which showed the the presence of micrometer scale abnormal deposits on the hair surface (Fig. 1c, d). The EDX analysis of these deposits pointed out the presence of silicium, sulphur, chlorine, calcium and titanium (Fig. 1e, f). These findings are in line with the literature3, except for the presence of titanium. In a second phase a finer analysis of the particles containing titanium was performed with micro X-ray fluorescence spectroscopy. This technique evidenced a large aggregate of 0.5-1 µm sized...
titanium particles associated with smaller (<= 0.5 µm) titanium particles on the hair surface. The EDX microanalysis confirmed the presence of a fluorescence peak corresponding to exogenous titanium in these abnormal deposits (Fig. 1g). The strong intensity of this peak (up to 200 counts/50 ms) reflects a high concentration of titanium along the patient’s hair shafts.

TiO$_2$ is the most widely used white pigment in the world. It has a wide range of applications, from paint to food coloring and is also used in cosmetics and skin care. Due to its properties of UV blocking, TiO$_2$ is extensively used in sunscreens. The potential toxicity of TiO$_2$ is an important public health concern since TiO$_2$ is classified by the International Agency for Research on Cancer (IARC) as an IARC Group 2B carcinogen. Concerning the skin, it is still debated whether TiO$_2$ does or not penetrate the stratum corneum, but it has been clearly demonstrated that it can deposit in the follicular orifice4. To date, there are no available data concerning the impact of TiO$_2$ cutaneous exposure on hair growth. However, the detection of TiO$_2$ along the hair shafts of our patient raises the question of a possible implication of TiO$_2$ in FFA pathogenesis via an allergic process. This hypothesis is based on the fact that lichen planus, which is a close or even the same entity as FFA, can be a consequence of metal sensitization, especially for oral lichen planus in association with dental implants containing nickel, iron or zinc5. Moreover, there are several reports of contact dermatitis or granulomatous reactions induced by TiO$_2$ upon its use in pacemakers, hip prostheses, or osteosynthesis, showing that TiO$_2$ can be a target allergen for T-cell lymphocytes6. Further studies are needed in order to confirm this potential link.

References

This article is protected by copyright. All rights reserved.

Figure: Clinical features and physico-chemical analysis

Figure: Clinical features of the patient (a, b). Typical frontal fibrosing alopecia characterized by a hairline regression (a) associated with eyebrows loss (b). (c, d) Conventional SEM images of a patient’s plucked hair showing the presence of micrometer scale abnormal deposits, scale bar 20 µm (c) and 10 µm (d). (e, f) The EDX data (black support, red abnormal deposit) identifies the presence of Silicium (EKeα=1.740 KeV), Sulphur (EKeα=2.305 KeV), Chlorine (EKeα=2.622 KeV), Calcium (EKeα=3.694 KeV) and Titanium (EKeα=4.511 KeV) in the abnormal deposit present at the hair surface (g). Micro X-ray fluorescence spectroscopy: high 500 nm resolution distribution maps of Ti within the two measured hair samples.